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Abstract:

We study from both a theoretical and an empirical perspective how a network of military
alliances and enmities affects the intensity of a conflict. The model combines elements from
network theory and from the politico-economic theory of conflict. We obtain a closed-form
characterization of the Nash equilibrium. Using the equilibrium conditions, we perform an
empirical analysis using data on the Second Congo War, a conflict that involves many groups
in a complex network of informal alliances and rivalries. The estimates of the fighting
externalities are then used to infer the extent to which the conflict intensity can be reduced
through (i) dismantling specific fighting groups involved in the conflict; (ii) weapon
embargoes; (iii) interventions aimed at pacifying animosity among groups. Finally, with the
aid of a random utility model we study how policy shocks can induce the reshaping of the
network structure.
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1 Introduction

Alliances and enmities among armed actors { be they rooted inhistory or in mere tactical consid-
erations { are part and parcel of warfare.1 In many episodes, especially in civil con
icts, they are
shallow links that are not sanctioned by formal treaties or war declarations. Even allied groups
retain separate agendas and pursue self-interested goals in competition with each other. The com-
mand of armed forces remains decentralized, and coordination is minimal.

Understanding the role of informal networks of military all iances and enmities is important,
not only for predicting outcomes, but also for implementing policies to contain or put an end to
violence. These may be diplomatic initiatives promoted by international organizations to restore
dialogue and reduce animosity between con
ict participants, or military interventions of external
forces against speci�c groups. Yet, with only few exceptions, the existing political and economic
theories of con
ict restrict attention to a small number of p layers, and do not consider network
aspects. In this paper, we construct a theory of con
ict focusing explicitly on informal networks of
alliances and enmities, and apply it econometrically to thestudy of the Second Congo War and its
aftermath.

The theoretical benchmark is acontest success function, henceforth CSF, in the spirit of Tullock
(1980). In a standard CSF, the share of the prize accruing to each group is determined by the
amount of resources (fighting effort) that each of them commits to the con
ict. In our model,
the network of alliances and enmities modi�es the sharing rule of a standard CSF by introducing
additional externalities. More precisely, we assume that the share of the prize accruing to groupi is
determined by the group's relative strength, which we labeloperational performance (OP). In turn,
the OP is determined by group i 's own �ghting e�ort and by the �ghting e�ort of its allied and
enemy groups. The �ghting e�ort of group i 's allies increases groupi 's OP, whereas the �ghting
e�ort of its enemies decreases it. Thus, each group's �ghtinge�ort a�ects positively its allies' OP
and negatively its enemies'. Instead, the costs of �ghting are borne individually by each group.
This raises a motive for strategic behavior among both enemyand allied groups. Note that in
our theory all agents determine their e�ort in a non-cooperative way; even alliances are loose links
and each allied group act in its own self-interest. The complex externality web a�ects the optimal
�ghting e�ort of all groups. We provide an analytical solutio n for the Nash equilibrium of the
game. Absent other sources of heterogeneity, the �ghting e�ort of each agent hinges on a measure
of network centrality which is related to the Katz-Bonacich centrality (Ballester et al. 2006).

The model can be used to predict how the network structure of military alliances and rivalries
a�ects the overall con
ict intensity. This is measured by the sum of the �ghting e�orts of all
contenders (total rent dissipation), which is our measure of the welfare loss associated with a
con
ict. Network externalities are a key driver of the escalation or containment of violence.

The main contribution of the paper is an empirical analysis based on the structural equations
of the model. We focus on the Second Congo War, a large-scale con
ict involving a rich network of
alliances and enmities that erupted in Democratic Republicof Congo (DRC) in 1998, and its after-

1Ghez (2011) distinguishes between tactical, historical, and natural alliances. Tactical alliances are formed \to
counter an immediate threat or adversary that has the potent ial to challenge a state's most vital interests" (2011:
20). They are instrumental and often opportunistic in natur e. Historical alliances are more resilient insofar as they
hinge on a historical tradition of cooperation. However, th ey often remain informal. Natural alliances imply a more
profound shared political culture and vision of the world (e .g., Western Europe and the U.S.). Contrary to tactical
and historical alliances, they are often formalized. Our st udy focuses on tactical and historical alliances/enmities .
In our theory, natural allies (e.g., the U.K and the U.S. duri ng WWII) can be viewed as merged actors acting in a
perfectly coordinated fashion.
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math. To identify the network, we use information from a vari ety of expert sources, supplemented
by information from the Armed Con
ict Location Event Databa se (ACLED). The estimated net-
work features numerous intransitivities, showing that this con
ict cannot be described as the clash
between two unitary camps (see Figure3 below).

Our estimation strategy exploits panel variations in the yearly number of clashes involving 80
armed groups in 1998{2010. Fighting e�ort is proxied by the number of clashes in which each
group is involved. Controlling for group �xed e�ects, we regress each group's �ghting e�ort on
the total �ghting e�orts of its degree-one allies and enemies, respectively. Since these e�orts are
endogenous and subject to a re
ection problem, we adopt an instrumental variable (IV) strategy
similar to that used by Acemoglu et al. (2015). Our identi�cation strategy exploits the exogenous
variation in the average weather conditions facing, respectively, the set of allies and of enemies of
each group. The focus on weather shocks is motivated by the recent literature documenting that
these have important e�ects on �ghting intensity (see Dell 2012, Hidalgo et al. 2010, Jia 2014,
Miguel et al. 2004, and Vanden Eynde 2011). Without imposing any restriction, we �nd that
the two estimated externalities have the opposite-sign pattern which aligns with the predictions
of the theory. Moreover, we �nd no external e�ect from the neut ral groups, also in line with the
theoretical predictions.

After estimating the network externalities, we perform a variety of counterfactual policy exper-
iments. First, we consider targeted policies that a�ect the incentives for selected groups to drop
out of the con
ict and/or their marginal cost of �ghting (e.g ., arms embargoes). The analysis can
guide international organizations in singling out armed groups whose decommissioning or weaken-
ing is most e�ective for scaling down con
ict. Second, we study the e�ect of paci�cation policies
aimed at reducing the hostility between enemy groups, e.g.,through bringing selected actors to the
negotiating table. Since enmities tend to increase the con
ict intensity, bilateral or multilateral
paci�cation tend to reduce violence. We �nd that in many cases the gain from paci�cation policies
are large, at instances well in excess of the observed clashes between the groups whose bilateral
hostilities are placated.

The results highlight the key role of Rwanda and Uganda in thecon
ict, although some smaller
guerrilla groups such as the Lord Resistance Army (LRA) are also important drivers of violence.
Simultaneously removing Uganda, Rwanda, and the groups associated with them is predicted to
reduce violence by 46%, which is signi�cantly more than the contribution of these groups to con
ict
in the data (34%). Arms embargoes that increase the �ghting cost of groups without inducing them
to demobilize are generally ine�ective because the reduction in the targeted groups' activity is typi-
cally o�set by an increase in the activity of the other groups. The most e�ective paci�cation policies
are those bringing to an end the hostility between the government of the Democratic Republic of
Congo (DRC) and Rwanda or Uganda. These interventions are more e�ective than breaking peace
between the DRC government and the various factions of the Rally of Congolese Democracy (RCD)
{ the local proxies of the two powerful neighbors { although the military engagements of the DRC
armed forces (FARDC) with the RCD are far more frequent than those with the armies of Rwanda
and Uganda.

In most of the paper, we maintain the assumption of an exogenous network. This assumption
is relaxed in an important extension, where we allow the network to adjust endogenously to policy
shocks, based on the predictions of a random utility model. The recomposition of the network
magni�es the e�ect of interventions targeting foreign groups. Removing all foreign groups reduces
the con
ict by 41%, signi�cantly more than in the case of an exogenous network (27%). These
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results are in line with the narrative that foreign interven tion is an important driver the DRC
con
ict.

Our contribution is related to various strands of the existing literature. First, our paper is
linked to the growing literature on the economics of networks (e.g., Acemoglu and Ozdaglar 2011,
Bramoull�e et al. 2014, Jackson 2008, Jackson and Zenou 2014). The small literaturethat studies
strategic interactions of multiple agents in con
ict netwo rks include Franke and •Ozt•urk (2009) and
Huremovic (2014). Neither of these papers consider, as we do, both alliances and enmities. Two
recent theoretical papers study the endogenous formation of networks in con
ict models. In Hiller
(2012) agents can form alliances to coerce payo�s from enemies with fewer friends. Jackson and
Nei (2014) studies the formation of alliances in multilateral interstate wars and the implications
on trade relationships between them, showing that trade canhave a mitigating e�ect on con
icts.
Neither of these papers endogenizes the choice of �ghting e�ort.

All of the above papers are theoretical. Our paper provides aquanti�cation of the theory by
estimating the key network externalities based on the structural equations of the theory. The esti-
mated structural parameters are then used to perform counterfactual policy experiments. In this
sense, our paper is related to recent work by Acemogluet al. (2015), which estimates a political
economy model of public goods provision using a network of Colombian municipalities. Their em-
pirical strategy is related to ours, although they use historical variations in players' characteristics
while we use panel variations (exogenous shocks in rainfall).

One of our three policy counterfactuals is closely related to the pioneer contribution by Ballester
et al. (2006), which characterizes equilibrium e�ort choices in a game of strategic complements
between neighboring nodes, and identify key players, i.e.,the agents whose removal reduces equi-
librium aggregate e�ort the most (see also Liu et al. 2011, and Lindquist and Zenou 2013).

Further, our study is broadly related to the growing politic o-economic literature on con
ict.
The papers in this literature typically focus on two groups confronting each other (see, e.g., Rohner
et al. 2013). A number of studies use a CSF (see, e.g., Grossman and Kim 1995, Hirshleifer 1989,
and Skaperdas 1996). A few papers consider multiple groups comprising each a large number of
players, and study collective action problems (see, e.g., Esteban and Ray 2001 and Rohner 2011).
Other papers consider free riding problems in alliances, which is a salient feature of our theory {
see, e.g., Esteban and Sakovics (2004), Konrad and Kovenock(2009), Olson and Zeckhauser (1966),
and Nitzan (1991). Some papers introduce the important distinction between �ghting and arming
(Bates et al. 2002; Jackson and Morelli 2009), an issue we abstract from although we study the
e�ects of arms embargoes among the policy counterfactual. For excellent surveys, see Bloch (2012)
and Konrad (2009 and 2011).

Finally, our paper is related to the empirical literature on civil war, and in particular to the
recent literature that studies con
ict using very disaggregated micro-data on geolocalized �ghting
events, such as for example Cassaret al. (2013), Dube and Vargas (2013), La Ferrara and Harari
(2012), Michalopoulos and Papaioannou (2013), and Rohneret al. (2013b). In a recent interesting
paper on the DRC con
ict, Sanchez de la Sierra (2014) studieshow price shocks of particular metals
(cobalt, gold) a�ect the incentives of armed groups to establish control of resource-producing villages
in Eastern Congo.

The paper is organized as follows: Section2 presents the theoretical model and characterizes
the equilibrium; Section 3 discusses the context of the Second Congo War and the data. Section
4 presents the main estimation results and a number of robustness checks. Section5 performs
policy counterfactual analyses. Section6 estimates, with the aid of a random utility model, how

3



policy shocks can trigger changes in the network structure. Section 7 concludes. An appendix
[henceforth, the Main Appendix ] contains some technical analysis. An online appendix [henceforth,
the Appendix ] contains accessory material.

2 Theory

2.1 Environment

We consider a population ofn 2 N agents (henceforth,groups) whose interactions are captured by
a network G 2 Gn , whereGn denotes the class of graphs onn nodes. Each pair of groups can be in
one of three states: alliance, enmity, or neutrality. We represent the set of bilateral states by the
signed adjacency matrixA = ( aij )1� i;j � n associated with the network G, where, for all i 6= j ,

aij =

8
><

>:

1; if i and j are allies;

� 1; if i and j are enemies;

0; if i and j are in a neutral relationship:

Note that a neutral relationship is modeled as the absence oflinks. We conventionally set aii = 0 :
Let a+

ij � max f aij ; 0g and a�
ij � � min f aij ; 0g denote the positive and negative parts ofaij ,

respectively. Then,A = A+ � A� whereA+ = ( a+
ij )1� i;j � n and A� = ( a�

ij )1� i;j � n . We denote the
corresponding subgraphs asG+ and G� , respectively, so that G can be written as the graph join
G = G+ � G� . Finally, we de�ne the number of group i 's allies and enemies asd+

i �
P n

j =1 a+
ij and

d�
i �

P n
j =1 a�

ij ;respectively.
The n groups compete for a prize denoted byV . We assume payo�s to be determined by a

generalized Tullock CSF. The CSF maps the relative �ghting intensity each group devotes to a
con
ict into the share of the prize he appropriates after the con
ict. More formally, we postulate
a payo� function � i : Gn � Rn ! R given by

� i (G; x) =

8
><

>:

' i(G;x )P n
j=1 maxf 0;' j (G;x )gV � x i ; if ' i (G; x) � 0;

� D; if ' i (G; x) < 0:

(1)

x 2 Rn is a vector describing the �ghting e�ort of each group (the choice variable), whereas' i 2 R
is group i 's operational performance (OP). The parameter D � 0 is that defeat cost that groups
su�er when their OP falls below zero (we discuss this feature below). Group i 's OP is assumed to
depend on groupi 's �ghting e�ort x i , as well as on its allies' and enemies' e�orts. More formally,
we assume that

' i (G; x) = x i + �
nX

j =1

(1 � 1D (j )) a+
ij x j � 


nX

j =1

(1 � 1D (j )) a�
ij x j ; (2)

where �; 
 2 [0; 1] are spillover parameters from allies' and enemies' �ghting e�orts, respectively.
1D (j ) 2 f 0; 1g is an indicator function that takes the unit value for groups j accepting defeat and
paying the cost D { these groups are assumed to exert no externality. For simplicity, with slight
abuse of notation, we henceforth setx j = 0 in equation ( 2) when group j accepts defeat, and omit
the indicator function.
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Note that the speci�cation of equation ( 2) implies that the only source heterogeneity across
groups is their position in the network. We introduce additional sources of heterogeneity (e.g., in
military power) in Section 2.4 below.

Equation (2) postulates that each active group's OP increases in the total e�ort exerted by
its allies and decreases in the total e�ort exerted by its enemies. These externalities compound
with the one already embedded in a standard CSF, which equation (2) nests as a particular case

when a+
ij = a�

ij = 0 for all i and j: In this case, � i (G; x) =
�

x i =
P n

j =1 x j

�
V � x i , and each group's

e�ort imposes a negative externality on the other groups in the contest only by increasing the
denominator of the CSF. In the rest of the paper, we normalizeV to unity. 2

Consider, for example, a network such thata+
kk 0 = 1 for one and only one pair of groups (k; k0)

(while a�
ij = 0 for all i; j = 1 ; : : : ; n). Then, � k(G; x) = ( xk + �x k0) =(

P n
i =1 x i + � (xk + xk0)) � xk :

In this case, an increase in the e�ort ofk0 a�ects the payo� of k via two channels: (i) the standard
negative externality working through the denominator; (ii ) the positive externality working through
the numerator. Thus, holding e�orts constant, an alliance between two groups increases the share
of the prize jointly accruing to them, at the expenses of the remaining groups. To the opposite,
enmity links strengthen the negative externality of the standard CSF.

Consider, �nally, the defeat option. When the OP turns negative (for instance, because the
enemies exert high e�ort), a group waves the white 
ag renouncing to �ght for the prize altogether.
In this case, the group su�ers the defeat costD { see equation (1).3 We view this assumption as
natural: too low an OP exposes groups to other armed groups' looting and ransacking.

2.2 Nash Equilibrium

In this section, we characterize the Nash equilibrium of thecontest. More formally, each group
chooses e�ort, x i , non-cooperatively so as to maximize� i (G; [x i ; x� i ]), given x� i . The equilibrium
is a �xed point of the e�ort vector.

Consider a candidate equilibrium wheren̂ � n groups participates actively in the contest. A
necessary and su�cient condition for the optimal e�ort choic e to be a concave problem is that, for
i = 1 ; 2; : : : ; n̂;4

@
@xi

n̂X

j =1

' j = 1 + �d +
i � 
d �

i > 0: (3)

In the empirical analysis below, we check that this condition holds in the empirical network for our
estimates of � and 
:

2This is without loss of generality. In particular, in equili brium, both xi and πi are proportional to V .
3By imposing appropriate restrictions on the network struct ure, one could setD = 0 . However, we prefer to impose

no such restriction. Nor do we impose any non-negativity con straint on xi. Given the linearity of the payo� function,
the zero e�ort level is a matter of normalization.

4Note that:

πi =
Wii (G, x � i) + xiP

j6= i xj +
P n

k=1 Wik (G, x � i) + xi
�
1 + βd+

i � γd�
i

� ,

where Wij (G, x � i) =
P

k6= i

�
βa+

jk � γa�
jk

�
xk � 0. πi is increasing and concave inxi as long as the denominator of the

CSF is increasing in xi, which is guaranteed by condition ( 3). In the standard Tullock CSF, πi = xi/
� P

j6= i xj + xi

�

is always increasing and concave inxi. Relative to this benchmark, enmities (alliances) increase the marginal bene�t
of e�ort by rendering the maximization problem more convex ( concave).
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When condition (3) holds, the optimal e�ort choice of participants satis�es a system of First-
Order Conditions (FOCs). Using equations (1)-(2), one obtains:

@�i (G; x)
@xi

= 0 () ' i =
1

1 + �d +
i � 
d �

i

0

@1 �
n̂X

j =1

' j

1

A
n̂X

j =1

' j :

Rearranging terms allows us to obtain a simple expression for the equilibrium OP level,

' �
i (G) = � �;
 (G)

�
1 � � �;
 (G)

�
� �;


i (G) ; (4)

and for the equilibrium share of the prize,

' �
i (G)

P n̂
j =1 ' �

j (G)
=

� �;

i (G)

P n̂
j =1 � �;


j (G)
; (5)

where
� �;


i (G) �
1

1 + �d +
i � 
d �

i

> 0 and � �;
 (G) � 1 �
1

P n̂
i =1 � �;


i (G)
: (6)

� �;

i (G) > 0 is a measure of the local hostility level capturing the externalities associated with

group i 's �rst-degree alliance and enmity links. One can show that 0< � �;
 (G) < 1; implying that
' �

i (G) > 0:5 Equation (5) implies that the share of the prize accruing to groupi increases in the
number of its allies and decreases in the number of its enemies.

The next proposition (proof in the Main Appendix ) characterizes equilibrium.

Proposition 1. Assume that � + 
 < 1=maxf � max (G+ ); d�
max g, where � max (M) denotes the largest

eigenvalue associated with the matrix M, and that condition (3) holds true for all i = 1 ; 2; :::n.
Then, 9D < 1 such that, 8D > D ; there exists an interior Nash equilibrium such that, 8i =
1; 2; : : : ; n, the equilibrium effort levels and OPs are given by

x �
i (G) = � �;
 (G)

�
1 � � �;
 (G)

�
c�;


i (G) (7)

and ' i = ' �
i (G) � 0 as given by equation (4), for n̂ = n. Here, � �;


i (G) and � �;
 (G) are defined
by equation (6), and

c�;
 (G) �
�
In + � A+ � 
 A� � � 1 Γ�;
 (G) ; (8)

is a centrality vector, whose generic element c�;

i (G) describes group i ’s centrality in the network

G. Finally, the equilibrium payoffs are given by

� �
i (G) = (1 � � �;
 (G))

�
� �;


i (G) � � �;
 (G) c�;

i (G)

�
> � D: (9)

If, in addition, � 0;

i > 0 for all i = 1 ; : : : ; n; then, 9D (where D � D < 1 ) such that, 8D > D , the

equilibrium is unique.
5Moreover, both � β,γ

i (G) and � β,γ (G) are decreasing with β and increasing with γ (the proof can be obtained
upon request from the authors).
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- D

x �
i

� i
�
G; [x �

i ; x�
� i ]

�

x i

� i
�
G; [x i ; x�

� i ]
�

Figure 1: The �gures shows the function � i
�
G; [x i ; x�

� i ]
�

for di�erent values of x i .

The �rst part of the proposition yields an existence result. Condition (i) is a su�cient condition
for the matrix in ( 8) to be invertible. Equation ( 7) follows from the set of FOCs. Figure1 shows the
properties of the payo� function � i

�
G; [x i ; x�

� i ]
�

at the equilibrium strategy pro�le. Group i 's payo�
function is constant (� i = � D ) for all x i below the threshold that guarantees the non-negativity of
' i : At the threshold, the function is discontinuous, capturing the fact that when ' i � 0 no defeat
cost is due.6 To the right of the threshold, condition ( 3) ensures that � i

�
G; [x i ; x�

� i ]
�

is strictly
concave inx i . Moreover, the payo� function is hump shaped and reaches a maximum at ' �

i > 0:
For a su�ciently large D , an equilibrium exists where all groups participate in the contest.7

The second part of the proposition establishes that, under astronger set of conditions, the Nash
equilibrium where all agents participate is unique. In this case, settingD su�ciently high rules out
equilibrium con�gurations in which a partition of groups ta kes the defeat option. For lower values
of D , equilibria in which some groups accept defeat may instead exist, and multiple equilibria are
possible.

2.2.1 Centrality

The centrality measure c�;

i (G) plays a key role in Proposition 1. Note, in particular, that the

relative �ghting e�orts of any two groups equals the ratio bet ween the respective centrality in the
network:

x �
i (G)

x �
j (G)

=
c�;


i (G)

c�;

j (G)

:

In Appendix A.1, we relate our centrality measure to the Katz-Bonacich centrality and provide

6The hump-shaped function that follows the FOC has a negative asymptote in correspondence of the (negative)
value of xi that turns the denominator of equation ( 1) equal to zero.

7The focus on an equilibrium in which all groups are active is w ithout loss of generality. The results are identical
if there are ~n � n groups waving the white 
ag. In our model, inactive groups ex ert no externality, and can therefore
be ignored.
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formal approximation results for networks in which the spillover parameters� and 
 are small. In
this case, our centrality measure can be approximated by thethe sum of (i) the Katz-Bonacich
centrality related to the network of enmities, G� , (ii) the (negative-parameter) Katz-Bonacich
centrality related to the network of alliances, G+ , and (iii) the local hostility vector, � �;
 (G).8

When higher-order terms can be neglected, our centrality measure (8) is increasing in 
 and in the
number of �rst- and second-degree enmities, and is decreasing in � and in the number of �rst-degree
alliances. Second-degree alliances have instead a positive e�ect on the centrality measure.9 When
� and 
 are small, each group's �ghting e�ort increases in the weighted di�erence between the
number of enmities (weighted by
 ) and of alliances (weighted by� ), i.e., d�

i 
 � d+
i � . The opposite

is true for the equilibrium payo�, that is increasing in d+
i � � d�

i 
 . Intuitively, a group with many
enemies tends to �ght harder and to appropriate a smaller share of the prize, whereas a group with
many allies tends to �ght less and to appropriate a large sizeof the prize.

2.2.2 Welfare

To discuss normative implications of the theory, it is useful to de�ne the notion of total rent
dissipation, given by the total equilibrium �ghting e�ort. More formally,

RD �;
 (G) �
nX

i =1

x �
i (G) = � �;
 (G)(1 � � �;
 (G))

nX

i =1

c�;

i (G): (10)

Since
P n

i =1 � �
i (G) = 1 � RD �;
 (G), minimizing rent dissipation is equivalent to maximizing welfare.

2.3 Example: From Hobbes to Rousseau

We provide a simple illustration of the role of alliances andenmities in the model with the aid
of a particular class of networks. A regular network, Gk+ ;k � , has the property that every group i
has d+

i = k+ alliances andd�
i = k� enmities. Thus, all groups have the same centrality. Regular

graphs are tractable and enable us to perform comparative statics with respect to the number of
alliances or enmities. Given the symmetric structure, there exists a symmetric Nash equilibrium
such that all groups exercise the same e�ort. Moreover,' �

i = ' � = 1=n, implying an equal division
of the pie. Under the conditions of Proposition 1, the equilibrium e�ort and payo� vectors are
given by:

x � �
k+ ; k� �

� x �
i

�
Gk+ ;k �

�
=

�
1

1 + �k + � 
k � �
1
n

�
�

1
n

; (11)

� � �
k+ ; k� �

� � �
i

�
Gk+ ;k �

�
=

1 + (1 + n)( �k + � 
k � )
n(1 + �k + � 
k � )

�
1
n

: (12)

Standard di�erentiation implies that x � is decreasing ink+ and increasing in k� ; whereas� � is
increasing in k+ and decreasing ink� : Intuitively, alliances (enmities) reduce (increase) e�ort and

8More formally, as β ! 0 and γ ! 0, the centrality measure de�ned in equation ( 8) can be written as

cβ,γ (G) = b � (γ, G� ) + b � (� β, G+ ) � � β,γ(G) + O (βγ) ,

where O (βγ) involves second- and higher-order terms, and the (� -weighted) Katz-Bonacich centrality with parameter
α is de�ned as b � (α, G) � b � �;
 ( G) (α, G) = ( I n � αA ) � 1 � β,γ(G) =

P 1
k=0 αkA k� β,γ (G), when α is smaller than the

inverse of the largest eigenvalue ofA (cf. Lemma 1 in the Appendix A.1.2).
9Supposej is an ally of both i and k, but i and k are neutral. Then, an increase in k's e�ort reduces j's e�ort,

and this in turn increases i's e�ort.
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rent dissipation by decreasing (increasing) the marginal return of individual �ghting e�ort. This
basic intuition must be amended in general networks due to the asymmetries in higher-order links.

The regular graph nests three interesting particular cases. First, if � = 
 = 0, we have a
standard Tullock game, with RD0;0 �

Gk+ ;k �

�
= ( n � 1) =n: Second, consider a complete network

of alliances (k+ = n � 1), where, in addition, � ! 1: Then, x � ! 0 and RD1;
 (Gn� 1;0) ! 0;
i.e., there is no rent dissipation. Namely, the society peacefully attains the equal split of the
prize, as in Rousseau'sharmonious society. The crux is the strong �ghting externality across
allied groups, which takes the marginal product of individual �ghting e�ort down to zero. Third,
consider, conversely, a society in which all relationshipsare hostile, i.e., k� = n � 1. Then,
RD�;
 (G0;n� 1) ! 1 as 
 ! 1=(n � 1)2: all rents are dissipated through �erce �ghting and total
destruction, as in Hobbes'homo homini lupus pre-contractual society.

2.4 Heterogeneous Fighting Technologies

So far, we have maintained that all groups have access to the same technology turning �ghting
e�ort into OP. This was useful for keeping the focus sharply on the network structure. In reality,
armed groups typically di�er in size, wealth, access to arms,leadership, etc. In this section, we
generalize our model by allowing �ghting technologies to di�er across groups. We restrict attention
to additive heterogeneity, since this is crucial for achieving identi�cation in the econometric model
presented below. Suppose that groupi 's OP is given by:10

' i (G; x) = ~' i + x i + �
nX

j =1

a+
ij x j � 


nX

j =1

a�
ij x j ; (13)

where ~' i is a group-speci�c shifter a�ecting the OP.
In the Main Appendix, we show that the equilibrium OP is unchanged, and continues to be

given by equation (4). Likewise, equation (5) continues to characterize the share of the prize
appropriated by each group. Somewhat surprising, the shareof resources appropriated by group
i , ' �

i (G)=
P n

j =1 ' �
j (G); is independent of ~' i : However, ~' i a�ects the equilibrium e�ort exerted by

group i and its payo�. In particular, the vector of the equilibrium �g hting e�orts is now given by

x� = ( In + � A+ � 
 A� )� 1(� �;
 (G)(1 � � �;
 (G))Γ� ;
 (G) � '̃ ); (14)

where '̃ = (~' i )1� i � n is the vector of group-speci�c shifters and the de�nitions of � �;
 (G) and
Γ�;
 (G) are unchanged (see Proposition2 in Appendix A.2).

Equation (13) will be the basis of our econometric analysis where we introduce both observable
and unobservable sources of heterogeneity. In particular,time-varying shocks to '̃ will be the
source of econometric identi�cation.

3 Empirical Application - The Second Congo War

In this section, we focus on the recent civil con
ict in the DRC with the goal of providing a
quantitative evaluation of the theory. More speci�cally, w e estimate the externality parameters�
and 
 from the structural equation ( 13) characterizing the Nash equilibrium of the model. Equipped

10 Although it is possible to solve for multiplicative heterog eneity, we abstract from it, since it hinders the possibilit y
of an econometric identi�cation of the parameters of the mod el.

Note that our model can be interpreted as the linear approxim ation of a logit-form CSF as in Skaperdas (1996).
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with the point estimates of the structural parameters, we perform counterfactual policy experiments
and assess their e�ectiveness in scaling down con
ict. We start by presenting the historical context
of the DRC con
ict. Then, we discuss the data sources and how we infer the network structure
from the data.

3.1 Historical Context

The DRC is the largest Sub-Saharan African country in terms of area, and is populated by about
75 million inhabitants. It is a failed state. After gaining i ndependence from Belgium in 1960, it
experienced recurrent political instability and wars that turned it into one of the poorest countries
in the world, in spite of its abundant natural resources. The DRC is also a highly ethnically
fragmented country with over 200 ethnic groups. The Congo con
ict is emblematic of the role of
natural resource rents and of the involvement of many inter-connected domestic and foreign actors.
In particular, the con
ict involved three Congolese rebel movements, 14 foreign armed groups, and
several militias (Autesserre 2008). In such complex and fragmented warfare, alliances and enmities
play a major role.

The war in Congo is intertwined with the ethnic con
icts in ne ighboring Rwanda and Uganda.
In 1994, Hutu radicals took control of the Rwandan government and allowed ethnic militias to
perpetrate the mass killing of nearly a million Tutsis and moderate Hutus in less than one hundred
days. After losing power to the Tutsi-led Rwandan Patriotic Front, over a million Hutus 
ed
Rwanda and found refuge in the DRC, that was ruled at that time by the dictator Mobutu Sese
Seko. The refugee camps hosted, along with civilians, former militiamen and genocidaires who
clashed regularly with the local Tutsi population, most notably in the Kivu region (Seybolt 2000).

As ethnic tensions mounted, a large coalition of African countries centered on Uganda and
Rwanda supported an anti-Mobutu rebellion led by Laurent-D�esir�e Kabila. The First Congo War
(1996-97) ended with Kabila's victory. However, the relationship of the new government of the DRC
with his former Tutsi allies and their sponsors, Rwanda and Uganda, soon turned sour. Resenting
the enormous political and military power exercised by the two neighbors, Kabila �rst dismissed
his Rwandan chief of sta�, James Kabarebe, and then ordered all Rwandan and Ugandan armed
forces to leave the country. New ethnic clashes erupted in Eastern Congo, fueled on the one hand
by the Rwanda-Uganda coalition, and on the other hand by Kabila himself who agitated the local
populations and the Hutu refugees against the Tutsi hegemony. The crisis escalated into outright
war. Rwanda and Uganda assisted the local Tutsi population (Banyamulenge) and armed a well-
organized rebel group, the Rally for Congolese Democracy (RCD) that quickly took control of
Eastern Congo. The main Hutu military organization, the Democratic Forces for the Liberation of
Rwanda (FDLR), sided with Kabila, who also received the international support of Angola, Chad,
Namibia, Sudan, and Zimbabwe, and of the local Mayi-Mayi militias.

O�cially, the Second Congo War ended in July 2003. In reality, stable peace was never achieved,
and signi�cant �ghting is still going on today (see Stearns 2011). The con
ict is highly fragmented.
In Prunier's words, \ the continent was fractured, not only for or against Kabila, but within each
of the two camps" (Prunier 2011: 187). Similarly, there was in-�ghting amon g di�erent pro-
government paramilitary groups, such as the Mayi-Mayi militias. The FARDC themselves were
notoriously prone to internal �ghts and mutinies, spurred b y the fact that its units are segregated
along ethnic lines and often correspond to former ethnic militias or paramilitaries that got integrated
into the national army (Prunier 2011: 305�; Turner 2007: 96). In summary, far from being a war
between two unitary camps, the con
ict engaged a complex webof alliances and enmities with

10



many non-transitive links.
After a major reshu�ing at the end of the First Congo War, the w eb of alliances and enmities

between the main armies and rebel groups has remained fairlystable in the period 1998-2010
(see Prunier 2011: 187�). Yet, there were some notable exceptions. The relationship between
Uganda and Rwanda cracked soon after the start of the con
ict, culminating in a series of armed
confrontations in the Kisangani area in the second half of 1999 and in 2000 that caused the death
of over 600 civilians (see Turner 2007: 200).11 The crisis spilled over to the local proxy of the
two countries: the RCD split into the Uganda-backed RCD-Kisangani (RCD-K) and the Rwanda-
backed RCD-Goma (RCD-G). After 2000, the relationship between Uganda and Rwanda lived in a
knife-edge equilibrium where recurrent tensions and skirmishes were prevented from spiraling into
a full-scale con
ict (McKnight 2015).

The relationship between the FARDC and the FDLR is also troubled. In the earlier stage of
the con
ict, they were solid allies. Things changed after Laurent Kabila was assassinated in 2001.
In 2002, a peace agreement signed at Sun City in South Africa allowed Joseph Kabila, Laurent's
son, to remain in power in exchange for his commitment to end the support for anti-Rwanda
rebel armies in Congo. As a result, the relations with the FARDC became volatile. The FDLR
kept engaging Tutsi forces in the Kivu region, raising concern for a new full-
edge intervention of
Rwanda. In 2009, the FDLR attacked civilians in some Kivu villages, prompting a major joint
military operation of the FARDC and Rwanda against them.12

In addition, there were numerous local rebellions which ledto the formation of new groups and
break-away mutinies of pre-existing militias. An example is the 2002 revolt of the Banyamulenge,
a Congolese Tutsi group, originating from a mutiny led by Patrick Masunzu that the mainstream
Rwanda-backed RCD-G troops failed to crush (see Human Rights Watch 2002).

3.2 Data

We use a panel of annual observations for the period 1998{2010 drawing on a variety of data
sources.13 The unit of analysis is at the group� year level. The summary statistics are displayed in
Table 1. In the rest of this section, we provide a summary description of the dataset. More details
can be found in the appendix.

Groups – The main data source for the �ghting e�ort and geolocalizatio n of groups is ACLED
(2012).14 This dataset contains 4676 geolocalized violent events taking place in the DRC involving
on the whole 80 groups: 4 Congolese state army groups, 47 domestic Congolese non-state militias,
11 foreign government armies and 18 foreign non-state militias.15 A complete list of the groups is

11 After the crisis of 1999-2000, the relationship turned sour , and remained heavily strained until very recently. The
two governments tried actively to destabilize each other by supporting opposition' movements. For instance, in 2011
Charles Ingabire, a Rwandan journalist and an outspoken cri tic of Kagame, was assassinated in Kampala, allegedly
by Rwandan secret service o�cers.

12 See BBC News, 13 May 2009, http://news.bbc.co.uk/2/hi/afr ica/8049105.stm.
13 The reason why our sample ends in 2010 is twofold: First, after this date con
ict intensity decreases signi�cantly

(in 2010 there were 301 events, while in 2011 only 89). Second, the rainfall data we use is only available until 2010.
14 ACLED is a well-established source used by many recent papers including, among others, Berman et al. (2014),

Cassar et al. (2013), Michalopoulos and Papaioannou (2013), and Rohner et al. (2013b).
15 We only include organized armed groups in the dataset, and exclude other actors such as civilians. While we

start out with 100 �ghting groups in the raw data, we drop all n on-bilateral �ghting events where no armed group
is involved in one of the two camps (e.g., events where an armed group attacks civilians). This leaves us with 80
�ghting groups in the �nal sample.
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Table 1: Summary statistics.

Variable Obs Mean Std. Dev. Min Max

Total Fighting 1,040 5.929 25.046 0 300
Total Fighting Enemies (TFE) 1,040 69.237 109.95 0 682
Total Fighting Allies (TFA) 1,040 48.603 85.75 0 563
Total Fighting Neutrals (TFN) 1,040 350.539 241.616 1 1042
d� (#Enemies) 1,040 2.95 4.306 0 26
d+ (#Allies) 1,040 2.4 3.45 0 21
Rainfall ( t � 1) 1,040 125.839 26.164 59.639 195.56

Note: The sample comprises the 80 �ghting groups that are inv olved in at least one
�ghting event in ACLED during the period 1998{2010.

provided in Appendix B.1.2.
Our classi�cation of groups strictly follows ACLED. 16 The cases of the FARDC and of Rwanda

deserve a special mention. ACLED codes each of these two actors as split in two groups by the
period of activity: \FARDC (1997-2001) (Kabila, L.)" (henc eforth, FARDC-LK) and \FARDC
(2001-) (Kabila, J.)" (henceforth, FARDC-JK); \Rwanda (19 94-1999)" (henceforth, Rwanda-I)
and \Rwanda (1999-)" (henceforth, Rwanda-II). In the case of the FARDC, the split is determined
by the assassination of Laurent Kabila, followed by the peace agreement of 2002 that marks the
o�cial end of the Second Congo War. In the case of Rwanda, the threshold coincides with the
deterioration of the relationships between Uganda and Rwanda. In our baseline estimation, we do
not merge these groups since: (i) it would be inconsistent with the general rule not to change the
ACLED coding; (ii) the discontinuities re
ect genuine poli tical breaking points. However, we also
consider robustness checks in which these groups are merged.

Fighting events – For each event, ACLED provides information on the exact location, date
and identity of the groups involved. ACLED draws primarily o n three types of sources: information
from local, regional, national, and continental media, reviewed on a daily basis; NGO reports;
Africa-focused news reports and analyses. To the best of ourknowledge, ACLED is the only source
covering the entire DRC and reporting geolocalized information about violent events, including an
indication of which groups �ght on the same side and which �ght on opposite sides.17 ACLED
data is subject to measurement error in two dimensions. First, many events go unreported (see
Van der Windt and Humphreys 2016, discussed in more detail inthe appendix). Second, the
precision of the geolocalization provided by ACLED has beenchallenged (Eck 2012).18 To address
the geolocalization issue, we supplement the information in ACLED with the UCDP Georeferenced
Event Dataset (GED) (Sundberg and Melander 2013). This dataset contains detailed georeferenced
information on con
ict events, but contrary to ACLED the GED dataset only reports one armed
group involved for each side of the con
ict. In addition, there are much fewer events (i.e., ca. one

16 We make an exception to this principle by merging the groups Unnamed Mayi-Mayi Militia (DRC)" and Mayi-
Mayi Militia since we believe them to be the same group.

17 Here is one example: \On the 3rd of February 2000, the MLC together with the Militar y Forces of Uganda
confronted the allied forces of the Military Forces of DRC an d Interahamwe Hutu Ethnic Militia. "

18 In a case study of Algeria 1997, she documents that 30% of events contain inaccurate geo-localisation information,
6% of events are double-counted, and 2% missing. However, the precision is higher in a case study of Burundi 2000.
There, she �nds 9% of observations to have inaccurate longitude/latitude information, and 2% of observations to be
double-counted, with no events missing.
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third) in GED than in ACLED.
Our main dependent variable is groupi 's yearly Fighting Effort, x it : This is measured as the sum

over all ACLED �ghting events involving group i in year t. In the robustness section, we construct
alternative �ghting e�ort measures by restricting the count to the more conspicuous events such as
those classi�ed by ACLED as battles or those involving fatalities.

Rainfall – For the purpose of our IV strategy, we build the yearly average of rainfall in
each group's homeland. We use a gauge-based rainfall measure from the Global Precipitation
Climatology Centre (GPCC) (Schneider et al. 2011), at a spatial resolution of 0.5� � 0.5� grid-cells.
This is a widely-used dataset. A group's homeland corresponds to the spatial zone of its military
operations (i.e., the convex hull containing all geolocalized ACLED events involving that group at
any time during the period 1998-2010). Then, for each yeart, we compute the average rainfall in
the grid-cell of the homeland centroid.

One potential concern is that there are few gauges in the DRC,mostly concentrated in the
Congo basin. Thus, in large parts of the country the data are constructed by interpolation based
on historical data and on the observed gauges. Thankfully, the problem is less severe in the East
of the country, where �ghting was most intense, since information there can exploit gauge stations
in neighboring countries.

In the robustness section, we investigate potential measurement error issues by using satellite-
based rainfall measures. These use atmospheric parameters(e.g., cloud coverage, light intensity) as
indirect measures of rainfall, blended with some information from local gauges. The �rst comes from
the Global Precipitation Climatology Project (GPCP) from N OAA and has a spatial resolution of
2.5� � 2.5� . The second dataset is the Tropical Rainfall Measuring Mission (TRMM) from NASA
at a resolution of 0.25� � 0.25� .

Figure 2 displays the �ghting intensity and average climate conditions for di�erent ethnic home-
lands in the DRC. Weather conditions vary considerably both across regions of the DRC and over
time.

Covariates – Given the large number of groups and years, we can control fortime-varying
shocks a�ecting groups with common characteristics. To thisaim, we interact time dummies with
three group-speci�c dummies. The �rst is a dummy for Government Organization that switches on
for groups that are o�cially a�liated to a domestic or foreig n government. This dummy covers 15
groups. The second is a dummy labelledForeign that switches on for 29 groups which are coded
as foreign actors. The third is a dummy labelledLarge that switches on for groups that have at
least 10 enmity links (this corresponds to the 90th percentile of groups with non-zero numbers of
enemies). This dummy is intended to capture shocks a�ecting large armed groups.

3.3 The Network

Our primary sources of information to infer the network of enmities and alliances are: (i) the
Yearbook of the Stockholm International Peace Research Institute, SIPRI (Seybolt 2000), (ii) \Non-
State Actor Data" (Cunningham et al. 2013), (iii) Brie�ng on the Congo War by the International
Crisis Group (1998), and (iv) Williams (2013). The four sources are consistent (i.e., they provide
no con
icting information) and complementary. Groups are classi�ed as allies or enemies not only
on the basis of ground �ghting, but also on that of political and logistical support (in particular,
they include actors operating in di�erent parts of the countr y). The four expert sources allow us
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Figure 2: Map of the DRC with average rainfall data from GPCC at a spatial resolution of 0.5� � 0.5� grid-cells, and number of
violent events from ACLED. Warmer colors (i.e., red) means less rain, colder colors (i.e., blue) mean more rain. Larger circles
mean more �ghting events.
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Figure 3: The �gure displays the network of alliances and enmities between 80 �ghting groups active in the
DRC over the 1998-2010 period.

to code 80 alliances and 24 enmities.19

The main limitation of the expert coding is that it does not cover small armed groups and
militias. For this reason, we complement its information with that inferred from the battle�eld
behavior in ACLED { with ACLED being strictly subordinate to the four expert sources. In
particular, we code two groups (i; j ) as allies if they have been observed �ghting on the same side
in at least one occasion during the sample period, and if, in addition, they have never been observed
clashing against one another. Conversely, we code two groups asenemies if they have been observed
�ghting on opposite sides on at least two occasions, and theyhave never been observed �ghting as
brothers in arms. We code all other dyads asneutral. A concern might be that the construction of
the network relies in part on the same ACLED data that we use tomeasure the outcome variable.
In this respect, one must emphasize two important features.First, for constructing the network
we exploit the bilateral information which is not used to construct the outcome variable. Second,
the network is assumed to be time-invariant (at least in the baseline speci�cation), whereas our
econometric identi�cation exploits the time variations in �ghting e�orts, controlling for group �xed
e�ects, as discussed in more detail below.

Altogether, we code 192 dyads as allies and 236 dyads as enemies. The remaining 5892 dyads
are classi�ed as neutral. Figure3 illustrates the network of alliances and rivalries in the DRC. Not

19 For the 15 actors with the greatest level of �ghting involvem ent over the sample period, expert coding allows us
to code 43 alliances (out of 101) and 13 enmities (out of 145).
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surprisingly, the FARDC have the highest centrality. In lin e with the narrative, the other groups
with a high centrality are Rwanda, Uganda, and the main branches of the RCD. On average, a
group has 2.95 enemies and 2.4 allies (see Table1).

In our baseline speci�cation, we assume a time-invariant network. This is an important as-
sumption that must be defended (although we relax it in an extension). As discussed above, the
system of alliances underwent major changes at the end of theFirst Congo War, while remaining
relatively stable thereafter (cf. Prunier 2011). The two main instances of changing relationships
discussed in Section3.1 involve the FARDC and Rwanda. Recall that ACLED splits the co ding
of Rwanda before and after 1999, and of the FARDC under Laurent and Joseph Kabila. This dis-
tinction is useful as it provides us with some 
exibility in c oding the two most important changes
in the system of alliances. In particular, Rwanda-I is codedas an ally of Uganda and the RCD,
while Rwanda-II is coded as an enemy of Uganda and of the RCD-K, and as an ally of the RCD-G.
Similarly, we code the FARDC-LK and the FDLR as allies, and the FARDC-JK and the FDLR
as neutral.20 We test the robustness of the results to alternative assumptions (including merging
Rwanda and the FARDC in two uni�ed groups).

For the other dyads, we searched for patterns in ACLED that may be suggestive of an inconsis-
tent behavior, i.e., sometimes �ghting together and sometimes against each other (see appendix for
details). We detected eight such cases, and among them only two clearly suggesting the possibility
of a switch in the nature of the link.21 We deal with the two problematic cases in the robustness
analysis. While switching links appear to be rare, many groups are active only in few periods,
and occasionally new groups are formed out of scissions of pre-existing groups. For this reason, in
Section 4.2.1 we exploit an unbalanced sample where we allow entry and exitof groups.

Finally, we must acknowledge that our procedure is likely tomiss some network links, namely
to induce as to code as neutral some dyads that should insteadbe regarded as allies or enemies.
Such missing links create measurement errors that can bias the estimates of the externalities (Chan-
drasekhar and Lewis 2016). We tackle this issue in Section4.2.4.

4 Econometric Model

Our empirical analysis is based on the model of Section2.4 which allows for exogenous sources
of heterogeneity in the OP of groups. Equation (13) can be estimated econometrically if one
assumes that the individual shocks ~' i comprise both observable and unobservable components.
More formally, we assume that ~' i = z0

i � + � i ; where zi is a vector of group-speci�c observable
characteristics, and� i is an unobserved shifter. Replacingx i and ' i by their respective equilibrium
values yields the following structural equation:

x �
i = ' �

i (G) � �
nX

j =1

a+
ij x �

j + 

nX

j =1

a�
ij x �

j � z0
i � � � i ; (15)

where we recall that ' �
i is a function of the structural parameters � and 
 and of the time-invariant

network structure while being independent of the realizations of individual shocks (zj ; � j ) (see

20 This accords with our coding rule (no expert coding, multipl e �ghts on the same and opposite camps). It is
also consistent with the narrative that the FARDC has fought the FLDR more for tactical reason (i.e., to prevent
Rwanda's direct intervention) than because of a deep hostil ity.

21 In the other cases, there is no time pattern, and the volatile behavior appears to be the outcome of tactical
�ghting. This suggests a bilateral relation that is neither an alliance nor an enmity. Hence, coding the link as neutral
seems accurate.
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equation (4) and the analysis in Section2.4). Our goal is to estimate the network parameters�
and 
 . The estimation is subject to a simultaneity or re
ection pr oblem (Manski 1993; Boucheret
al. 2012), a common challenge in the estimation of network externalities. In this class of models, it
is usually di�cult to separate contextual e�ects, i.e., the i n
uence of players' characteristics, from
endogenous e�ects, i.e., the e�ect of outcome variables via network externalities. In our model,
the endogenous e�ect is associated with the �ghting e�ort exerted by a group's allies and enemies.
Although our theory postulates no contextual e�ect (at equil ibrium they are ruled out from ' �

i ), it
is plausible that omitted variables a�ecting x �

i are spatially correlated, implying that one cannot
safely assume spatial independence of� i : Ignoring this problem might yield inconsistent estimates
of the spillover parameters.

The re
ection problem can be tackled by an IV strategy. For instance, in a recent study on
public good provision in a network of Colombian municipalities, Acemogluet al. (2015) uses as
instruments historical characteristics of local municipalities. In our case, it is di�cult to single out
time-invariant group characteristics that a�ect the �ghtin g e�orts of a group's allies or enemies
without invalidating the exclusion restriction. For insta nce, cultural or ethnic characteristics of
group i are likely to be shared by its allies. For this reason, we takethe alternative route of
identifying the model out of exogenous time-varying shifters a�ecting the �ghting intensity of allies
and enemies over time. This panel approach has the advantagethat we can di�erence out any
time-invariant heterogeneity, thereby eliminating the pr oblem of correlated e�ects.

Panel Specification – We maintain the assumption of an exogenous time-invariant network,
and assume the con
ict to repeat itself over several years. We abstract from reputational e�ects,
and regard each period as a one-shot game. These are strong assumptions, but they are necessary
to retain tractability. The variation over time in con
ict i ntensity is driven by the realization
of group-and-time-speci�c shocks, ampli�ed or o�set by the endogenous response of the groups
which, in turn, hinges on the network structure. More formally, we allow both x �

i and ~' i to be
time-varying. x �

it corresponds to the annual number of ACLED events involvingi in year t, and

~' it = z0
it � + ei + � it : (16)

Here, zit is a vector of observable shocks with coe�cients� , ei is an unobservable time-invariant
group-speci�c shifter, and � it is an i.i.d., zero-mean unobservable shock. Rainfall measures are
examples of observable shifterszit that will be key for identi�cation. The panel analogue of equation
(15) can then be written as:

FIGHT it = FE i � � � TFA it + 
 � TFE it � z0
it � � � it ; (17)

where FIGHT it = x �
it is group i0s �ghting e�ort at t; TFA it =

P n
j =1 a+

ij x �
jt is the total �ghting

e�ort of group i 's allies, TFE it =
P n

j =1 a�
ij x �

jt is the total �ghting e�ort of group i 's enemies, and
FE i = + ' �

i (G) � ei is a group �xed e�ect capturing both the equilibrium OP level a nd unobservable
time-invariant heterogeneity. The panel dimension allowsus to �lter out such heterogeneity by
including group �xed e�ects. However, due to the re
ection pr oblem discussed above, the two
covariates TFA and TFE are correlated with the error terms. OLS estimates are inconsistent due
to an endogeneity bias: the �ghting e�orts of group i 's allies and enemies are a�ected by groupi 's
e�ort.

Instrumental variables (IV) – The problem can be addressed by a panel IV strategy. Identi-
�cation requires exogenous sources of variation in the �ghting e�orts of group i 's allies and enemies
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that do not in
uence group i 's �ghting e�ort directly. To this aim, we use time-varying cl imatic
shocks (rainfall) impacting the homelands of armed groups. In line with the empirical litera-
ture and historical case studies (Dell 2012), we focus on local rainfall as a time-varying shifter
of OP, and hence the �ghting e�ort of allies and enemies. More formally, our instruments are
RA it =

P n
j =1 a+

ij � RAIN �
jt and RE it =

P n
j =1 a�

ij � RAIN jt , where RAIN jt denotes the rainfall in
group j 's territory. Take TFE, for instance. Above-average rainfall in the homelands of group i 's
enemies (re it ) reduces the enemy groups' propensity to �ghting because itincreases agricultural
productivity, thereby pushing up the reservation wages of local workers to be recruited by enemy
armed groups. In other words, rainfall increases the opportunity cost of �ghting. In addition, high
rainfall could pose an obstacle to war activities (e.g., through mud roads), reinforcing the opportu-
nity cost e�ect. These channels linking rainfall to con
ict i s in line with earlier studies including,
among others, Jia (2014), Hidalgoet al. (2010), Hsiang et al. (2013), Miguel et al. (2004), and
Vanden Eynde (2011). There also potential o�setting e�ects: rainfall can increase revenues avail-
able to armed groups if agriculture is used as a source of taxation (see Fearon 2008). Our estimates
below suggest that in our data this e�ect is dominated by the others.

To be a valid instrument, rainfall in the homelands of the allies (enemies) must be correlated
with the allies' (enemies') �ghting e�orts. We document belo w that this is so in the data. In
addition, rainfall must satisfy the exclusion restriction that rainfall in the homelands of group i 's
allies and enemies has no direct e�ect on groupi 's �ghting e�ort. A �rst concern is that rainfall
is spatially correlated, due to the proximity of the homelands of allied or enemy groups. However,
this problem is addressed by controlling for the rainfall in group i 's homeland in the second-stage
regression. For instance, suppose that groupi has a single enemy, groupk; and that the two groups
live in adjacent homelands. Rainfall in k's homeland is correlated with rainfall in i 's homeland.
However, rainfall in k's homeland is a valid instrument for k's �ghting e�ort, as long as rainfall
in i 's homeland is included as a non-excluded instrument. A potential issue arises if rainfall is
measured with error, and measurement error has a non-classical nature. We tackle this issue below
in the robustness analysis.

Two additional threats to our exclusion restriction come from internal trade and migration.
Rainfall may a�ect terms of trade. For instance, a drought destroying crops in Western Congo
could cause an increases in the price of agricultural products throughout the entire DRC, thereby
a�ecting �ghting in the Eastern part of the country. Such a cha nnel may be important in a well-
integrated country with large domestic trade. However, inter-regional trade is limited in a very
poor country like the DRC with a disintegrating government, very lacunary transport infrastructure,
and a disastrous security situation. The war itself contributed to the collapse of internal trade, as
documented by Zeender and Rothing (2010: 11). The result is avery localized economy dominated
by subsistence farming where spillovers through trade are likely to be negligible.

Weather shocks could trigger migration and refugee 
ows. For instance, one could imagine a
situation where an averse weather shock hitting the homeland of one of group i 's enemies (say,
group k) induces people to move fromk's to i 's homeland. The mass of displaced people could
cause tensions and ultimately increase groupi 's �ghting for reasons other than changes in the
�ghting e�ort of k. This would constitute a violation of the exclusion restriction. While we have
no geolocalized statistical information to rule out this possibility formally, the evidence at the
aggregate level suggests that this is unlikely to be a �rst-order issue in the DRC. According to
White (2014), the quasi-totality of migration movements in the DRC in the last decades have
been caused by armed con
icts and concerns about security rather than by economic factors. For
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instance, only 0.7% of migrants indicate 
eeing from natural catastrophes as the motivation for

eeing their homeland, while almost all refugees indicate that their movements are con
ict- or
security-related. It therefore appears very rare in the DRC that people are induced to migrate
because of the scarcity of rain. In addition, even people whoare forced to move because of �ghting
\ reportedly try to stay close to home so that they can monitor their lands and track the local security
situation. (. . . ) IDPs travel between half a day to one and a half days to reach a place of safety"
(White 2014: 6). Or in the words of the Internal Displacement Monitoring Centre (2009: 69),
\ the nature of the displacement movements that we see in North Kivu and Ituri is often over short
distances from 5 to 80 kilometers." This means that even people seeking shelter are unlikely to
travel far away and hence not overly likely to penetrate zones of activity of other groups.22

Similarly, rainfall could a�ect the activity of bandit group s. The e�ect of rainfall is ambiguous,
since a drought reduces the resources available for predation, while making it easier for bandit
groups to recruit new members. A threat to our identi�cation would come if weather shocks
induced bandit groups to move across di�erent homelands witha systematic pattern (e.g., moving
away from dry regions). Although we cannot rule out some confounding e�ects coming from this
channel, it would be di�cult to rationalize the opposite-si gn e�ects that we �nd in the data by the
activity of bandit groups (and, similarly, for migration). It is also worth noting that the boundaries
between the activity of militias and bandit groups is thin in the DRC.

Spatial Autocorrelation – Since both violent events and climatic shocks are clusteredin
space, it is important to take into account spatial dependence in our data. For this reason, we
estimate standard errors with a spatial HAC correction allowing for both cross-sectional spatial
correlation and location-speci�c serial correlation, following Conley (1999 and 2008). However,
there is no o�-the-shelf application of these methods to panel IV regressions.23 Therefore, we
program a STATA code that allows us to estimate Conley standard errors in a 
exible fashion.24 In
the spatial dimension we retain a radius of 150 km for the spatial kernel { corresponding to the 11th
percentile of the observed distribution of bilateral distance between groups. More speci�cally, the
weights in the covariance matrix are assumed to decay linearly with the distance from the central
point of a group's homeland, reaching zero after 150km. We impose no constraint on the temporal
decay for the Newey-West/Bartlett kernel that governs serial correlation across time periods. In
other words, observations within the spatial radius can be correlated over time without any decay
pattern. Robustness to alternative spatial and temporal kernels is explored in AppendixB.2.2.

A related challenge has been to adapt to our environment the test for weak instruments proposed
by Kleinbergen and Paap (2006) (henceforth, KP). KP is a ranktest of the �rst-stage VCE matrix
that is standardly used with 2SLS estimators and cluster robust standard errors. The statistic is
valid under general assumptions and the main requirement isthat the �rst-stage estimates have a
well de�ned asymptotic VCE. To the best of our knowledge, the test has never been implemented
in panel IV regressions with spatial HAC correction. We tackled a similar issue for Hansen J
overidenti�cation test.

22 An extended discussion of migration within the DRC can be fou nd in Appendix B.2.1.
23 See Vogelsang (2011) for an asymptotic theory for test statistics in linear panel models that are robust to

heteroskedasticity, autocorrelation, and/or spatial cor relation. Hsiang et al. (2011) provide a useful STATA code
to calculate spatially correlated standard errors in panel regressions. Also, IV regressions are dealt with by Jeanty
(2012). However, neither routine handles spatial correlat ion in panel IV regressions.

24 We owe a special thanks to Rafael Lalive for his generous helpin this task.
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4.1 Estimates of the Externalities

In this section, we estimate the regression equation (17) using a panel of 80 armed groups over
1998-2010. In all speci�cations, we include group �xed e�ects and year dummies, and estimate
standard errors assuming spatial and within-group correlation as discussed above. In addition,
all speci�cations control for current and lagged rainfall at the centroid of the group's homeland,
allowing for both a linear and a quadratic term.25

Table 2 displays the estimates of� � and + 
 from second-stage regressions. Column 1 is an
OLS speci�cation. The enemies' �ghting e�ort (TFE) is associ ated with a higher �ghting e�ort
for the group (consistent with the theory), whereas the allies' �ghting e�ort (TFA) has no e�ect
on it. Since the OLS estimates are subject to an endogeneity bias, in the remaining columns we
run a set of IV regressions. Column 2 replicates the speci�cation of column 1 in a 2SLS setup
using the lagged �ghting e�orts of each group's set of enemiesand allies as excluded instruments.
In accordance with the predictions of the theory, the estimated coe�cients of TFE and TFA are
positive (0.13) and negative (-0.22), respectively, and statistically signi�cant at the 5% level.

The associated �rst-stage regressions are reported in the corresponding columns of Table3,
where, for presentational purposes, only the coe�cients ofthe excluded instruments are displayed.
It is reassuring to see that the lagged rainfall in the enemies' homelands has a negative e�ect on the
enemies' (while not on the allies') �ghting e�ort, whereas th e lagged rainfall in the allies' homelands
has a negative e�ect on the allies' (while not on the enemies')�ghting e�ort. This pattern, which
conforms with the theoretical predictions, is con�rmed in all speci�cations of Table 3. The KP-stat
of 10.6 raises a (mild) concern about weak instruments, an issue to which we return below.

In the parsimonious speci�cation of column 2 (Table 2), the coe�cients of interest may spuri-
ously re
ect some time-varying shocks that a�ect the armed groups' incentives to �ght asymmetri-
cally. For instance, global economic or political shocks may change the pressure from international
organizations, which in turn a�ects mainly the war activity o f foreign armies, government organi-
zations, or more generally of large combatant groups. To �lter out such time-varying heterogeneity,
in columns 3{8 we control for three time-invariant characteristics (Government Organization, For-
eign, and Large) interacted with a full set of year dummies. The descriptionof these three variables
can be found in Section3.2 above. Together with adding control variables, we expand the set of
excluded instruments (i.e., the rainfall measures), in order to improve the predictive power of the
�rst-stage regression.26 The expanded set of instruments now comprises current-yearand lagged-
year rainfall (with a linear and a quadratic term) of allies and enemies, as well as current and lagged
rainfall of degree-two neighbors (i.e., enemies' enemies and allies' enemies), both with a linear and
a quadratic term.27

25 As discussed in Section3.2, following the ACLED coding, the FARDC and Rwanda are each sp lit in two groups
according to the period of activity. When a group is inactive (e.g., the FARDC-JK during 1997-2001), its �ghting
e�ort is set equal to zero. To avoid that these arti�cial zero observations a�ect the estimates of the structural
parameters β and γ, we always include in the regressions a group dummy interacted with a full set of year dummies
for the period of inactivity. In Section 4.2, we show that the estimates are robust to merging Rwanda and FARDC
into a unique group each.

26 We also run the speci�cation of column (2) with the expanded s et of instruments. The estimated coe�cients of
interest are 0.15 for TFE (s.e. 0.05) and -0.15 for TFA (s.e. 0.06). The KP-test yields the value 19.7.

27 When we use the current and past average rainfall in enemies'and allies' homelands as instruments, we also control
for the current and past average rainfall in the group's home land in the second-stage regression. This is important,
since the rainfall in enemies' and allies' homelands is correlated with the rainfall in the own group homeland. Omitting
the latter would lead to a violation of the exclusion restric tion.

The results are robust to including further instruments, fo r instance, the allies' allies and the enemies' allies.
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Table 2: Baseline regressions (second stage).

Dependent variable: Total Fighting

OLS Reduced IV Full IV Neutrals Battles ( d� , d+ ) � 1 GED coord. GED union

(1) (2) (3) (4) (5) (6) (7) (8)

Total Fight. Enemies (TFE) 0.066*** 0.130** 0.066*** 0.083 *** 0.081*** 0.091*** 0.084*** 0.125***
(0.016) (0.057) (0.019) (0.019) (0.020) (0.022) (0.019) (0.039)

Total Fight. Allies (TFA) 0.001 -0.218** -0.117*** -0.114* ** -0.117*** -0.157*** -0.112*** -0.117***
(0.017) (0.086) (0.035) (0.033) (0.037) (0.058) (0.032) (0.036)

Total Fight. Neutrals (TFN) 0.004 0.004 0.013 0.004 0.006
(0.004) (0.005) (0.013) (0.004) (0.004)

Additional controls Reduced Reduced Full Full Full Full Ful l Full
Estimator OLS IV IV IV IV IV IV IV
Set of Instrument Variables n.a. Restricted Full Full Full F ull Full Full
Kleibergen-Paap F-stat n.a. 10.6 19.5 22.5 20.6 17.8 22.1 10.4
Hansen J (p-value) n.a. 0.16 0.68 0.58 0.53 0.66 0.58 0.69
Observations 1040 1040 1040 1040 988 598 1040 1781
R-squared 0.510 0.265 0.579 0.568 0.567 0.537 0.569 0.516

Note: An observation is a given armed group in a given year. Th e panel contains 80 armed groups between 1998 and 2010. All regressions
include group �xed e�ects and control for rainfall in the gro up's homeland. Columns 1{3 include time �xed e�ects. Robust standard errors
corrected for Spatial HAC in parentheses. Signi�cance levels are indicated by * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table 3: Baseline regressions (�rst stage).

IV regress. of col. (2) IV regress. of col. (3) IV regress. of col. (4)

Dep. Variable: TFE TFA TFE TFA TFE TFA
(1) (2) (3) (4) (5) (6)

Rain (t � 1) Enem. -1.595*** -0.019 -1.354*** 0.277* -1.327*** 0.291**
(0.297) (0.141) (0.332) (0.156) (0.322) (0.139)

Sq. Rain (t � 1) Enem. 0.000*** 0.000 0.000*** -0.000 0.000*** -0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Rain (t � 1) All. 0.126 -0.929*** 0.028 -0.588*** 0.089 -0.571**
(0.283) (0.155) (0.222) (0.192) (0.219) (0.225)

Sq. Rain (t � 1) All. -0.000 0.000*** -0.000 0.000*** -0.000 0.000***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Current Rain Enem. -1.125*** 0.131 -0.936*** 0.073
(0.243) (0.102) (0.257) (0.108)

Sq. Curr. Rain Enem. 0.000*** -0.000*** 0.000* -0.000**
(0.000) (0.000) (0.000) (0.000)

Current Rain All. -0.461** -0.366*** -0.414** -0.448***
(0.204) (0.123) (0.210) (0.164)

Sq. Curr. Rain All. 0.000 0.000*** 0.000 0.000***
(0.000) (0.000) (0.000) (0.000)

Kleibergen-Paap F-stat 10.6 10.6 19.5 19.5 22.5 22.5
Hansen J (p-value) 0.16 0.16 0.68 0.68 0.58 0.58
Observations 1040 1040 1040 1040 1040 1040

Note: An observation is a given armed group in a given year. Th e panel contains 80 armed groups between
1998 and 2010. All regressions include group �xed e�ects and control for rainfall in the group's homeland.
Columns 1-4 contain time �xed e�ects. Robust standard error s corrected for Spatial HAC in parentheses.
Signi�cance levels are indicated by * p < 0.1, ** p < 0.05, *** p < 0.01.
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The estimated coe�cients in column 3 continue to feature the alternate sign pattern predicted
by the theory. Their magnitude is smaller than in column 2, but the coe�cients are estimated
more precisely, being statistically signi�cant at the 1% level. In column 4, we add to the vector
of regressors TFN (Total Fighting of Neutrals), which is de� ned in analogy with TFA and TFE. 28

Hence, we now also add to the set of instruments the current and lagged rainfall in the territories of
neutral groups (both as a linear and quadratic term). Since the theory predicts that the exogenous
variation in TFN should have no e�ect on the dependent variable, this is a useful test of the
theoretical predictions. The prediction is borne out in the data: the point estimate of TFN is very
close to zero and statistically insigni�cant. The �rst-sta ge regressions yield large KP-stat (19.5 in
column 3 and 22.5 in column 4), suggesting no weak instrumentproblem. Column 4 is our preferred
speci�cation and will be the basis of our robustness checks in the following sections below.

Our measure of �ghting intensity is coarse insofar as it doesnot weigh events by the amount of
military force involved. Ideally, we would like to have information about the number of casualties
or other measures of physical destruction. However, this information is available only for very few
events. This raises the concern that the results may be driven by small events (e.g., local riots or
minor skirmishes). As discussed in Section3.2, ACLED distinguishes between di�erent categories
of events. In column 5, we measure �ghting e�ort in a more restrictive fashion, by only counting
events that are classi�ed in ACLED as battles. This addresses two issues: �rst, battles are less
likely to get unreported by media; second, it would be reassuring to see that the estimates of� and

 are robust to excluding small events that represent a share of 42% of total events. The estimated
coe�cients are indeed very similar when we use only information on battles, with no evidence of
weak instruments (KP-stat=20.6). 29

A related concern is that many of the 80 groups are involved only in a small number of events.
Although heterogeneity in group size is controlled for by �xed e�ects, one might be concerned that
the estimation of the externalities hinges on the occasional operation of small groups. In lack of a
direct measure of group size, in column 6 we restrict the analysis to the 46 groups that have at least
one friend and one enemy, proxying for being relatively important actors. This restriction reduces
the network size, causing a 40% drop in the number of observations. Reassuringly, the estimated
externalities are larger than in column 4 (� = 0 :16 and 
 = 0 :09). The KP-stat is 17.8.

The accuracy of the geolocalization in ACLED has been questioned, as discussed in Section3.2
above. For this reason, we integrate ACLED with information from GED, which has been argued
to be more accurate in terms of the geolocalization of events. We cannot simply replace ACLED
with GED data because (i) the number of observation would drop by two thirds, aggravating
underreporting concerns; (ii) for each event, GED lists at most one group on each side of the clash.
However, in 1090 cases it is possible to match events in GED and ACLED beyond reasonable doubt.
In these cases, we use the geolocalization in GED to identifythe groups' homelands. For the events
that cannot be matched, we continue to use the geolocalization in ACLED. The results, provided
in column 7, are indistinguishable from those in column 4 (with KP=22.1).

In addition, we use the union set of the events in GED and ACLED, i.e., we construct a larger
dataset that merges the matched events with all unmatched events in either dataset. By this
procedure, the number of �ghting events increases from 4676to 5078.30 There is also a larger

28 Note that when we include TFN we are not able to include annual time dummies anymore as they are multi-
collinear to the sum of TFA+TFE+TFN.

29 The number of observation falls to 988, as 4 of the 80 groups drop out of the sample for never being involved in
any battles.

30 In particular, of the 1641 groups in GED, 402 are very likely m issing in ACLED, 1090 can be accurately matched
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number of armed groups, 137 instead of 80. This procedure involves some heroic assumptions, and
is subject to the risk that our algorithm fails to match some events that are in fact reported by
both datasets, thereby causing an arti�cial duplication of events. With this caveat in mind, we �nd
the estimates of TFE, TFA, and TFN to be, respectively, positive, negative, and insigni�cant, in
accordance with the theory. The order of magnitude of the coe�cients is comparable with those
in column 4, and the point estimates are in fact larger in absolute value. However, the KP-stat is
now lower (10.4). The details of the constructions of the merged dataset are in AppendixB.1.

The externalities are quantitatively large. Consider the estimates in column 4. The average
number of yearly events in which a group is involved is 6, and its standard deviation is 25. Hence,
a one standard deviation increase in TFE (i.e., 110 events) translates into a 0.37 increase in total
�ghting (i.e., 9 events). A one standard deviation increasein TFA (i.e., 86 events) translates into
a 0.39 decrease in total �ghting (i.e., 10 events). An estimate of the global e�ect of the network
externalities is provided in Section5.3 below.

We have also checked that, conditional on the estimates of� and 
; condition (3) holds true for
all groups in con
ict in all IV speci�cations of Table 3. Finally, the null hypothesis of the Hansen J
test is not rejected in any speci�cation, indicating that th e overidenti�cation restrictions are valid.

4.2 Robustness Analysis

This section summarizes the large battery of robustness checks that we performed. Formal results,
tables and details about methodology are provided in Appendix B.2.

4.2.1 Variation over Time in the Network Structure

In our dataset, many groups are not active in all periods. We also observe new groups entering the
con
ict at a later stage, and a few groups which stop �ghting.31 While in the analysis of Section4.1
we interpret zero �ghting events as a low �ghting e�ort, the ab sence of armed engagements could
alternatively indicate that a group does not take part in the con
ict in a particular subperiod. For
this reason, in the �rst robustness check we address this concern by recognizing that the number
of groups that are in the network may change over time.

We use a variety of expert sources to check when each group started its activity, and when,
if at all, it ceased to be militarily active. We could gather i nformation for 38 groups (many of
them being active in the entire period). However, no o�cial d ate of establishment or disbandment
is available for informal organizations such as ethnic militias. For these groups, we construct a
window [S � !; T + ! ]; where S and T are, respectively, the �rst and last year in which we see the
group being active (i.e., x it > 0). We add a window of ! � 0 since the groups might have existed
prior to their �rst or after their last recorded engagement. The details of the construction of the
dataset are provided in Appendix 4.2.1.

We estimate the model by the following three strategies:

1. We add to the baseline speci�cation a set of group-speci�cdummies switching on in all periods
in which the group is suspected to be inactive.

with very high probability to ACLED events, while 149 events are likely to refer to given events already in ACLED but
the match cannot be proven with high enough probability. Hen ce, in column 8 we follow the conservative approach
of only adding the GED events missing with very high probabil ity in ACLED (i.e., 402 additional events) to avoid
double counting.

31 For instance, the CNDP did not exist before 2006, while the UC P abandoned military activity and turned into
a political party in 2005.
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Table 4: Time-varying network.

Dependent variable: Total Fighting

(1) (2) (3) (4) (5) (6) (7)

Total Fight. Enemies (TFE) 0.085*** 0.074*** 0.088*** 0.13 8*** 0.075 0.068** 0.211***
(0.022) (0.023) (0.024) (0.031) (0.048) (0.030) (0.047)

Total Fight. Allies (TFA) -0.115*** -0.097*** -0.106*** -0 .212*** -0.143** -0.128*** -0.251***
(0.031) (0.025) (0.030) (0.065) (0.065) (0.041) (0.070)

Total Fight. Neutrals (TFN) 0.006 0.003 0.002 0.048** 0.022 0.006 -0.022**
(0.005) (0.004) (0.005) (0.023) (0.021) (0.010) (0.009)

Kleibergen-Paap F-stat 27.1 8.7 11.7 9.2 5.5 15.3 n.a.
Hansen J (p-value) 0.61 0.48 0..60 0.71 0.74 0.51 n.a.
Observations 1040 1040 1040 469 322 637 1040
R-squared 0.603 0.634 0.594 0.501 0.627 0.594 0.179

Note: An observation is a given armed group in a given year. Th e panel contains 80 armed groups between 1998 and
2010. All regressions include group �xed e�ects and the full set of controls and instruments (like in baseline column
4 of Table 2). Columns 1-3 de�ne windows of activity and inclu de a group-speci�c dummy for periods when a group
is inactive. In column 1, inactivity is de�ned by expert codi ng combined with ACLED information. In column 2,
inactivity is de�ned based on ACLED information only. In col umn 3, inactivity is based on ACLED information +
or - 3 years. Columns 4-6 implement an ILLE estimator on the un balanced sample of active groups only using the
same windows of activity as in columns 1-3. Column 7 performs an instrumented Tobit based on a Control Function
approach. Cluster robust standard errors are corrected for Spatial HAC in columns 1{6 and are bootstrapped in
column 7. Signi�cance levels are indicated by * p < 0.1, ** p < 0.05, *** p < 0.01.

2. We adjust, in addition, the estimation procedure to make it fully consistent with the structural
model. To see why, consider equations (4){( 6). When the number of groups in the network
changes over time, one must replace' �

i (G) by a time-varying analogue given by

' �
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: When ' �

i;t is time-varying, it is no longer absorbed
by the group �xed e�ects. However, the model can still be estimated. In particular, one can
then estimate the following regression equation:

FIGHT it = FE i + ' �
i;t (G; �; 
 ) � � � TFA it + 
 � TFE it � z0

it � � � it : (18)

Here, ' �
i;t can be estimated conditional on a prior for� and 
; asd+

i;t and d�
i;t are observable for

all i and t. Thus, we implement the iterated linear least squares estimator (ILLE) developed
by Blundell and Robin (1999).32

32 We start by guessing (β0 , γ0) and ϕ�
i,t (G; β0 , γ0) . Then, we obtain a �rst set of estimates ( β̂1 , γ̂1) conditional on

the guess, update ϕ�
i,t(β̂1, γ̂1), and re-estimate the model iteratively until we converge to a �xed point. Computa-

tionally, we stop the iteration as soon as k (β̂n, γ̂n) � (β̂n� 1 , γ̂n� 1) k< 0.0001 (i.e., two orders of magnitude smaller
than the estimated standard errors). While Blundell and Rob in (1999) address the issue of endogenous regressors
with a control function approach (i.e. �rst stage estimated residuals included as regressors in the second stage), we
iterate on our 2SLS estimator that accommodates spatially c lustered robust standard errors. We checked that the
control function-ILLE and 2SLS-ILLE yield identical point estimates.
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3. We estimate the model using instrumented Tobit based on a control function approach.

Table 4 displays the results. All columns report analogues of the baseline speci�cation of column
4 in Table 2. Columns 1{3 correspond to the �rst approach. In column 1, the time window is set
to ! = 0; in column 3, we set ! = 3; in column 2, we code as a period of possible inactivity any
consecutive spell of zeros at the beginning or at the end of the sample, using only the information
from ACLED. The estimates of � and 
 are similar to those in column 4 in Table 2. The KP-stats
are 25.3, 8.7, and 11.7, respectively. Columns 4{6 correspond to the second approach. In spite of
a drastic sample size reduction, the coe�cients continue tohave the same order of magnitude as
in the baseline table. In column 4, the coe�cients are larger in absolute value, and the coe�cient
of TFN turns signi�cant, while remaining much smaller than t hose of TFE and TFA. In column
5, the coe�cient of TFE turns insigni�cant. In column 6, the r esults are very similar to column 4
in Table 2. The KP-stats are 6.5, 5.5, and 15.3, respectively. The weakinstruments in columns 4
and 5 are not surprising, since the number of observations is, respectively, one third and one half of
that in the full sample. Also, this speci�cation is very demanding, since in many cases no reported
involvement in ACLED events may indicate a low level of �ghti ng activity rather than an outright
withdrawal from the con
ict. Column 7 is based on Tobit with a control function approach for the
two-stage instrumentation. The estimated coe�cients have the usual alternate sign pattern, but
are now much larger in absolute value. Overall, we �nd these results reassuring.

4.2.2 Alternative Specifications

In this section, we consider three sets of robustness checks.

Second-Degree IV, Salient Events, and Alternative Network Construction: We start
from a miscellaneous of important robustness checks whose results are summarized in Appendix
Table B.7. In column 1, we use only the rainfall in the homeland of degree-two neighbors (e.g.,
the rain of enemies' enemies and of allies' enemies) as excluded instruments, following Bramoull�e
et al. (2009).33;34 In column 2, we use the information for the subperiod 1998-2002 to estimate
the network links, and the panel for 2003-10 to estimate the spillover coe�cients. In columns 3-4,
we restrict attention to salient episodes for which measurement error is likely to be less important.
In column 3, we drop all events with zero fatalities (while keeping events for which the number is
unknown). In column 4, we restrict attention to battles, rio ts, and violent events. In column 5, we
exclude all events involving groupi when computing the total �ghting e�orts of allies and enemies
of group i . For example, if the LRA's enemies are involved in 10 clashesin year 2000, and 3 of them
involve the LRA, then the measure of TFE used in the regression would take the value of 7. In
column 6, we control for the lagged total �ghting e�ort of both enemies and allies. In columns 7-8,
we test the robustness of the results to di�erent de�nitions of enmities and alliances: in column 7
we code two groups as enemies if they have been observed clashing on at least one occasion, and if
they have never been observed co-�ghting on the same side; incolumn 8, we stick to the baseline

33 In particular, we continue to treat as excluded instruments the rainfall in the enemies' enemies' homelands, the
rainfall in the allies' enemies' homelands, and the rainfal l in the neutrals' homelands. However, the rainfall in the
enemies' homelands and the rainfall in the allies' homelands are treated as control variables. For all rainfall measures
we take the linear and square term and the current rain, �rst l ag and second lag.

34 Note that, contrary to their model, in our theory there is no r eason why an instrumentation based on �rst-order
links should yield inconsistent estimates. As discussed above, the case for our regressions to be contaminated by
contextual e�ects is weak in our panel regression.
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treatment for enemies, but only code two groups as allies if they have been observed co-�ghting
in at least two occasions during the sample period and if they have never been observed clashing.
Finally, in column 9, we instrument the network links with dy adic characteristics (co-ethnicity,
spatial proximity of group centroids, etc.). The observed links are replaced by probabilities of link
formation as predicted by a random utility model discussed in Section 6.2 below.

The results are highly robust. The coe�cient of TFE is always positive, highly signi�cant, and
stable. Likewise, the coe�cient of TFA is always negative and signi�cant with the exception of
column 2. In most cases, the KP-stat is above 20. Last, but notleast important, the coe�cient of
TFN is always very close to zero and insigni�cant. It is reassuring that the results are stable to
di�erent proxies for �ghting activities and di�erent rules fo r coding friends and enemies.35

Group Definition (FARDC, Rwanda & Others): In our benchmark analysis we have
followed the rule of treating groups as separate entities whenever they are classi�ed as such by
ACLED. This agnostic way of proceeding has the advantage of not requiring any discretional
coding decision. However, it is useful to check the robustness of our results in this dimension.36

The results are summarized in Appendix TableB.8. In column 1, we treat the FARDC-LK and
FARDC-JK as one single actor. In column 2, we merge all local Mayi-Mayi militia branches into
one single actor. In column 3, we merge Rwanda-I and Rwanda-II into a single group. Finally, in
column 4, we treat both the FARDC and Rwanda as two single actors. Reassuringly, the results
are robust in all columns.

Ambiguous Network Links: The Appendix Table B.9 deals with ambiguous network links,
i.e., links where the narrative might suggest di�erent coding than the one we used. First, we consider
the fragile relationship between Uganda and Rwanda (see Section 3.1 for historical background).
In our baseline regression, our coding rule classi�es Rwanda-I and Uganda as allies (until 1999),
whereas Rwanda-II and Uganda are coded as enemies (after 1999). In columns 1 and 2, we code
Rwanda and Uganda as always neutral and always allies, respectively. In column 3, instead, we
code them as allies until 1999, and as neutral thereafter. Next, we consider another ambiguous
relationship, i.e., FARDC vs. FDLR. In the baseline estimates they are �rst allies (until 2001), and
then neutral. Here, we assume that they are enemies after 2001 (column 4), or neutral throughout
the entire period (column 5). Next, we exclude the CNDD sincethis group appears to have switched
its relation with the Mayi-Mayi militia (column 6). Next, we classify Uganda and the RCD-G as
enemies (column 7). While this violates our coding rule (that classi�es them as neutral), it is
more consistent with the narrative. Next, we code all memberstates of the Southern African
Development Community (SADC) as allies of each other and of the FARDC (column 8). Finally,
we de�ne as \governments allied to the FARDC" all governments allied to the FARDC in the
baseline treatment plus all SADC member states. Finally, welet all \governments allied to the

35 In an earlier version of this paper, which was based on a di�er ent strategy to construct the network, we imple-
mented a conservative identi�cation strategy using the rai nfalls in the groups' historical ethnic homelands as excluded
instruments. Each armed group was linked when possible to a corresponding underlying main ethnic group. Next,
we computed the rainfall averages on the polygons of all ethnic groups. Given that rainfall in ethnic homeland is an
imperfect proxy for rainfall observed by groups in their act ual current territory, we had a severe weak instrument
problem (KP-stat=3.55). The coe�cient of TFE was positive ( +0.08) and signi�cant, while that TFA was statistically
insigni�cant. In the current version, we obtain similar res ults: the weak instrument problem persists (KP-stat=7.25) ,
the coe�cient of TFE is positive (+0.08) and signi�cant, whi le that of TFA is statistically insigni�cant (with a p-value
of 0.694) and has a positive point estimate.

36 In all the robustness checks of Table B.8, we re-estimate the network for each of the di�erent speci�c ations.
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FARDC" be (i) allied among themselves, (ii) allied to the FAR DC, and (iii) enemies to Rwanda-I
and Uganda (column 9). The results are in all cases similar tothe baseline table.

4.2.3 Measurement Error in Rainfall

A concern with our IV strategy is that the rainfall variable m ay be subject to non-classical mea-
surement error. In particular, �ghting activities may dest roy rain gauges located in battle�elds. As
a result, our gauge-based GPCC measure might systematically underreport precipitations in war
zones. The issue is twofold: �rst, mismeasurement may result in a spurious negative correlation
between rainfall and �ghting in the �rst-stage regression.37 Second, our identi�cation hinges on
rainfall in the homelands of group i0s enemies/allies having no direct e�ect on groupi0s �ghting
e�ort after conditioning on the rainfall in group i0s homelands. However, the exclusion restriction
would be invalidated if the measurement error in the instruments were correlated with group i0s
�ghting e�ort.

To study this potential problem, we consider satellite-based rainfall estimates from TRMM or
GPCP (see the data description in Section3.2). Clearly, satellite-based measurements are less
a�ected by the dynamics of con
ict. However, they provide less direct and far less accurate rainfall
estimates than do gauges.38

Therefore, it is not surprising that, if we use satellite rainfall data instead of gauge-based data
as instruments, we run into a weak instrument problem. However, the satellite estimates can be
used to infer whether gauged-based measures are biased. To this aim, consider the following simple
model:

RAIN sat
ct =  sat

c + RAIN ct + vsat
ct

RAIN gau
ct =  gau

c + RAIN ct + ~vgau
ct (19)

where c denotes the grid-cell at which rainfall is measured,RAIN ct is the true (unobservable)
rainfall, and vsat

ct and ~vgau
ct are the measurement errors.vsat

ct is assumed to be i.i.d. The error term
of the gauge measure is potentially subject to violence-driven measurement error. This possibility
is allowed by letting ~vgau

ct = � � VIOLENCE ct + vgau
ct ; where vgau

ct is an i.i.d error term. One can
eliminate rain ct from the previous system of equations and obtain:

RAIN gau
ct =  c + RAIN sat

ct + � � VIOLENCE ct + � ct ; (20)

where  c =  gau
c �  sat

c and � ct = vgau
ct � vsat

ct are, respectively, a grid-cell �xed e�ect and an i.i.d.
disturbance. Our null hypothesis is that � = 0 : If � 6= 0 ; the gauge-based measure su�ers with
non-classical measurement error.

We run a regression based on equation (20), measuring violence by the number of con
icts
in ACLED. The Appendix Table B.10 summarizes the results. Columns 1{4 report the results
when satellite-based rainfall measures are retrieved fromTRMM. Column 1 is a cross-sectional
speci�cation; column 2 includes grid-cell �xed e�ects { consistent with equation ( 20). In columns
3 and 4 we consider a log-linear speci�cation where the two rainfall measures are log-scaled; this

37 Remember, though, that we also use lagged rain to predict current �ghting intensity.
38 Romilly and Gebremichael (2011) discuss the shortcomings of satellite-based rainfall estimates. On the one hand,

satellite rainfall estimates are contaminated by sources such as temporal sampling, instrument, and algorithm error.
On the other hand, a number of studies based on U.S. data document that their performance varies systematically
with season, region, and elevation, resulting in potential ly severe biases.
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corresponds to a multiplicatively separable speci�cation of model 19. Finally, we replicate the
same set of four speci�cations in columns 5{8 with the GPCP satellite measure. Year dummies are
included in all regressions. Standard errors are clusteredat the grid-cell level.39

As expected, there is a highly signi�cant positive correlation between the gauge- and the
satellite-based rainfall measures. Most important, all estimates of � are not signi�cantly di�er-
ent from zero, with its point estimates switching signs across speci�cations. The hypothesis that
� is negative due to the destruction of gauges in battle�elds is strongly rejected, especially in
speci�cations with grid-cell �xed e�ects, which are consistent with our panel speci�cation where
parameters are identi�ed out of the variation in rainfall ov er time. The point estimates of � are
consistently positive and statistically insigni�cant. We conclude that there is no evidence that the
gauge-based GPCC precipitation data are subject to non-classical measurement error in the DRC.

4.2.4 Measurement Error in Network Links

Another concern here is that the network may be measured witherror. Recent research by Chan-
drasekhar and Lewis (2016) shows that regression of economic outcomes on network neighbors'
outcomes, in the presence of measurement error of network links, can give rise to inconsistent es-
timates.40 Moreover, the bias can work in di�erent directions, and there is no general remedy to
correct it. To address this issue, we follow a Monte Carlo approach based on rewiring links in the
observed network at random, and measuring the robustness ofour estimates in such perturbed
networks. We consider di�erent assumptions about the extentand nature of measurement error of
the network.

More speci�cally, we postulate a data generating process, and then we introduce a speci�c
(plausible) model of mismeasurement of network links. Then, we estimate the model as if the
econometrician did not know the true network, but had to infer it from data measured with error.
This procedure is generated for a large number of realizations of mismeasurement errors (1,000
draws per each case). The procedure is exposed in more details in the appendix and the results are
reported in Appendix Table B.11. The general lesson from this exercise is twofold. First, the Monte
Carlo generated measurement error in the links leads to an attenuation bias. This suggests that,
under the plausible assumption that some information aboutexisting links is missing, our regression
analysis underestimates the spillover e�ects. Second, the extent of the bias is quantitatively modest.
A measurement error of the order of 10% (which we regard as fairly large) yields an underestimate
of the spillover parameters of 12% for� and 23% for 
 . Overall, the analysis con�rms that our
baseline estimates are robust to link measurement errors.

5 Policy Interventions

In this section, we perform counterfactual policy experiments. First, we consider interventions that
selectively induce some �ghting groups to exit of the contest. Next, we consider policies (such as
an arms embargo) that increase the marginal cost of �ghting for selected groups. Finally, we study
the e�ect of paci�cation policies, where enmity links are selectively turned into neutral ones. The
motivation of the analysis is to guide policy intervention. For instance, an international organization

39 Recall that the GPCP satellite measure is only available at t he 2.5� 2.5 degree level, i.e., for larger cells than the
two other measures that are at the 0.5� 0.5 degree level. In this case, we cluster at the 2.5� 2.5 cell level.

40 It has been proven, however, that likelihood-based inference while ignoring the missing data mechanism leads to
unbiased estimates under the assumption of missingness at random (MAR) (Little and Rubin 2002). Mohan et al.
(2013) provide conditions on the network for recoverabilit y of parameters even when MAR is violated.
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aiming at scaling down violence may be interested in the extent to which each of the combatant
groups contributes to the con
ict escalation.

The analysis is based on the simulation of counterfactual equilibria. To this aim, let Gb denote
the benchmark network in which all groups �ght. We set the externality parameters equal to their
baseline point estimates�̂ � 0:083 and ^
 � 0:114 (column 4, Table 2).41 The equations (6) and
(15){( 17) allow us to estimate ei ; the time-invariant unobserved heterogeneity. More formally:

êi = � cFE i + � �̂; 
̂ (Gb)
�

1 � � �̂; 
̂ (Gb)
�

� �̂; 
̂
i (Gb); (21)

where cFE i is the estimated group-speci�c �xed e�ect, � �̂; 
̂
i (Gb) = 1 =(1+ �̂d +

i � 
̂d �
i ); and � �̂; 
̂ (Gb) =

1� 1=(
P

j � �̂; 
̂
j (Gb)) : We collapse the vector of time-varying shifterszit (rainfall, etc.) to its sample

average,z̄i =
P 2010

t=1998
zit
13 , and denote byZ̄ = f z̄i g the estimated matrix of shifters. In other words,

we compare an average year of con
ict in the benchmark model to its corresponding counterfactual.
We consistently set the time-varying i.i.d. shocks� it to zero for all groups.

Following the analysis in Section2.4, the vector of (Nash) equilibrium �ghting e�orts is obtained
by inverting the system of equilibrium conditions implied by equations (15) and (16). In matrix
form, this yields:

x� (Gb) = ( I + �̂ A+ (Gb) � 
̂ A� (Gb)) � 1
h
� �̂ ; 
̂ (Gb)(1 � � �̂; 
̂ (Gb))Γ�̂ ; 
̂ (Gb) � (Z̄b� + be)

i
: (22)

Based on this equilibrium, we evaluate the e�ects of unanticipated policy shocks that a�ect
either the network Gb or some exogenous parameters. We measure the welfare e�ects by the
counterfactual changes in rent dissipation as de�ned in equation (10).

The results of this section are subject to thecaveat that policy shocks may induce a reshu�ing of
alliances and enmities. In Section6 we allow the structure of the network to respond endogenously
to policy interventions.

5.1 Removing Armed Groups

Consider a policy intervention that induces some groups to leave the contest. Formally, this corre-
sponds to an exogenous subsidy to exit. In the benchmark model, all groups su�er the same defeat
cost, D; assumed to be prohibitively high relative to the payo� of staying in the contest. Here, we
assume that an international organization can decrease group i 's exit cost to D � Wi : Wi > 0 is
an intervention that may entail both the stick and the carrot . On the one hand, targeted military
operations from international peace-keeping forces may increase the cost of staying in the contest.
On the other hand, the promise of impunity to militia command ers or the prospective integration
in the political process of the DRC may increase the attractiveness of leaving the contest. We
assume the policy treatment to be su�ciently strong to induc e the targeted groups to leave, and
study which intervention would be most e�ective in reducing rent dissipation.

The analysis bears a close similarity with the key-player analysis in Ballester et al. (2006).
In their language, a key player is the agent whose removal triggers the largest reduction in rent
dissipation. In Proposition 3 in Appendix A.3, we show that in our model the identity of the key
player is related to our centrality measure de�ned in equation (8).

41 All second-order conditions (cf. equation ( 3)) continue to hold for all groups in the counterfactual expe riments
in which one player is removed.
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To perform the analysis, let K denote a vector comprising a subset of cardinalityk of the
n groups (where 1 � k < n ). We denote by Gbnf K g the network after removing the sub-
set K: The vector of equilibrium �ghting e�orts is given by equation s which are analogous to
equation (22) except that the dimension of the system is reduced byk, the adjacency matrix is
A(Gbnf K g); and the parameters attached to the network structure are replaced by � �̂; 
̂ (Gbnf K g)
and Γ�̂; 
̂ (Gbnf K g). We compute the rent dissipation before and after the removal of the subgroup

K . Formally, the change in rent dissipation equals �RD �̂; 
̂
K � RD �̂; 
̂ �

Gbnf K g
�
� RD �̂; 
̂ �

Gb
�
, where

RD �̂; 
̂ �
Gbnf K g

�
�

P k
i =1 x �

i

�
Gbnf K g

�
.

We start with policies targeting single groups (k = 1). We exclude the FARDC and the DRC
police from the set of potential targets (except for mutinies), because we do not view removing local
government organizations as a policy-relevant option.42 Table 5 summarizes the results for the 15
groups whose removal yields the largest reduction in rent dissipation at the baseline estimates of
column 4 in Table 2. These groups include the most important actors in the con
ict. If we exclude
the activity of the FARDC, they account jointly for 82% of the total �ghting. A complete list of the
groups is provided in Appendix Table B.1. For each group we report the number of its enemies and
allies, the observed share in total �ghting x �

k

�
Gb

�
=

P n
i =1 x �

i

�
Gb

�
, the reduction in rent dissipation

(� �RD �̂; 
̂
K ) associated with its removal, and amultiplier de�ned as the ratio between the reduction

in rent dissipation and the share in total �ghting. The multi plier is a useful measure of the impact
of the policy weighted by the importance of the group being removed. The fourth and �fth columns
are evaluated at the baseline estimates of� and 
 of column 4 in Table 2. In the last two columns we
report intervals centered on the baseline estimates with the range of plus and minus one standard
deviation. More precisely, we set (̂�; 
̂ ) � (0:085; 0:063) and (̂�; 
̂ ) � (0:142; 0:103). This yields a
range of variation of the e�ects as the externality parameters change.

Two �ndings are noteworthy. First, although there is a high c orrelation between the observed
contribution of each group to total �ghting and the reductio n in total �ghting associated with its
removal, the correlation is signi�cantly below unity for th e most active groups. For instance, this
correlation is 83% in the subsample of the ten most active groups. Second, there is heterogeneity in
the multipliers. Rwanda-backed RCD-G, the most active armed group, accounts for less than 9%
of the total military activity in the data. Its removal would reduce aggregate �ghting by over 15%,
with a multiplier of 1.7. Likewise, Uganda-backed RCD-K accounts for 6% of military activity.
Its removal would reduce �ghting by more than 9%, with a multi plier of 1.6. Removing the Lord
Resistance Army would reduce rent dissipation by 6%, a larger e�ect than that from removing more
active groups such as the FDLR, the Mayi-Mayi militia, and th e CNDP. Large multipliers are also
associated with the UPC and the MLC.

Consider, next, the simultaneous removal of multiple groups. For computational reasons, we

focus on the 14 top groups in the single-group analysis (i.e., those leading to � �RD �̂; 
̂
K above

1%). Since the excluded groups account for a very small fraction of total �ghting, we believe this
restriction to be unimportant. Let us start by removing pair s of groups. The Appendix Table
B.13 reports the results. Removing Rwanda and its closest ally, the RCD-G, yields a 24% reduction
in �ghting activity, signi�cantly larger than their 14% con tribution to total violence. There is
some complementarity in the joint intervention: the e�ect of their joint removal is 12% larger than
the sum of the individual e�ects. The e�ect is larger than that o f jointly removing the RCD-G

42 In addition, we consider the Rwandan army as a single entity, namely, we always simultaneously remove the two
separate groups associated by ACLED to Rwanda.
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Table 5: Welfare e�ects of removing individual armed groups.

Group # Enmities # Allies Share �ght. � �RD Multipl.
� �RD Multipl.

(� 1 SD) (� 1 SD)

(1) (2) (3) (4) (5) (6) (7)

RCD-G 14 4 0.087 0.151 1.7 [0.125, 0.181] [1.4, 2.1]
RCD-K 13 5 0.060 0.094 1.6 [0.070, 0.151] [1.2, 2.5]
Rwanda 17 9 0.053 0.066 1.2 [0.053, 0.109] [1.0, 2.0]
LRA 6 1 0.041 0.056 1.4 [0.038, 0.115] [0.9, 2.8]
FDLR 5 6 0.066 0.055 0.8 [0.059, 0.044] [0.9, 0.7]
Mayi-Mayi 6 7 0.057 0.046 0.8 [0.054, 0.022] [1.0, 0.4]
Uganda 13 9 0.043 0.043 1.0 [0.038, 0.048] [0.9, 1.1]
CNDP 3 2 0.043 0.041 0.9 [0.041, 0.040] [0.9, 0.9]
MLC 7 4 0.031 0.039 1.3 [0.026, 0.074] [0.8, 2.4]
UPC 5 1 0.022 0.030 1.4 [0.018, 0.057] [0.8, 2.6]
Lendu Ethnic Mil. 6 3 0.024 0.022 0.9 [0.039, -0.012] [1.6, 0.5]
Mutiny FARDC 3 2 0.016 0.016 1.0 [0.009, 0.045] [0.6, 2.8]
Interahamwe 7 5 0.014 0.014 1.0 [0.024, -0.017] [1.7, 1.2]
ADF 3 4 0.013 0.012 0.9 [0.011, 0.017] [0.8, 1.3]
FRPI 2 1 0.009 0.010 1.1 [0.003, 0.031] [0.4, 3.7]

Note: The computation of the counterfactual equilibrium is based on the baseline point estimates of column 4
in Table 2. For each group, we report the number of its enemies and allies (cols. 1-2); the observed share of total
�ghting involving this group (col. 3); the counterfactual r eduction in rent dissipation associated with its removal
(col. 4); a multiplier de�ned as the ratio of col. 4 over col. 3 (col. 5); the reduction in RD and its associated
multiplier for a set of parameters equal to the baseline estimates � 1 SD (cols. 6-7).

and RCD-K, the two most active groups. Similarly, we detect some complementarity in the joint
removal of the RCD-K and Uganda, its international sponsor. An even stronger complementarity
(16%) is observed when Uganda is matched with the MLC, another close ally.

Consider, next, triplets of groups. The Appendix Table B.14 reports the top 50 triplets in the
two experiments. All such triplets include the RCD-G. The top 7 triplets also include Rwanda.43

The most e�ective intervention is the removal of Rwanda in combination with the RCD-G and
CNDP (-29.5%, with a multiplier of 1.6), two of Rwanda's alli es. The e�ect of this intervention is
14% larger than the sum of the e�ects of individually removing the three groups. More generally,
interventions involving the RCD-G and Rwanda have large multipliers.44 Similar results obtain
when �ve groups (instead of three) are targeted simultaneously (see Appendix TableB.15). Here,
the most e�ective intervention is to remove Rwanda, the RCD-G, and the CNDP (the top triplet
above) along with Uganda and the RCD-K. This policy yields a counterfactual fall in rent dissipation
of 39%, with a multiplier of 1.4.

Finally, consider the e�ect of targeting selected subsets ofarmed groups that have particular
connections with each other. The upper panel of Table6 summarizes the results. At the baseline
estimates, removing the 29 groups with a foreign a�liation r educes rent dissipation by 27%, in
line with their share in total �ghting. We show below that the e�ect of this intervention increases

43 Among the top 50, Rwanda, RCD-K, FDLR, and LRA appear 12 times , Uganda and CNDP 8 times, Mayi-Mayi
Militia 7 times, UPC, and Lendu Ethnic Milita 6 times.

44 The largest multipliers obtain when Rwanda and the RCD-G are matched with, respectively (in ranked order),
Lendu Ethnic Militia, UPC, Mutiny of FARDC, ADF. Each of thes e triplets has a multiplier of ca. 1.7, and exhibits
signi�cant complementarities.
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Table 6: Welfare e�ects of removing selected multiple armed groups.

Set of Groups
# Sh.

� �RD Multiplier MAD
New enm. & all. Regression coe�s.

groups �ght. (at the median) [enmities,alliances]

(1) (2) (3) (4) (5) (6) (7) (8)

EXOGENOUS NETWORK

Foreign Groups 29 0.280 0.268 1.0 { { {
Ituri 9 0.086 0.094 1.1 { { {
Out of Rwanda 6 0.092 0.087 0.9 { { {
Rwa&Uga&ass. 10 0.336 0.456 1.4 { { {
Large Groups 16 0.802 0.677 0.8 { { {

WITH ENDOGENOUS NETWORK RECOMPOSITION

Foreign Groups 29 0.280 0.412 1.5 0.029 [-11, +8] [-0.010, +0.008]
Ituri 9 0.086 0.094 1.1 0 [+0, +0] [-0.003, +0.011]
Out of Rwanda 6 0.092 0.117 1.3 0.031 [0, +2] [-0.009, +0.011]
Rwa&Uga&ass. 10 0.336 0.332 1.0 0.044 [+3, -6] [-0.011, +0.011]
Large Groups 16 0.802 0.719 0.9 0.008 [0, +9] [-0.003, +0.002]

Note: The computation of the counterfactual equilibrium is based on the baseline point estimates of column 4
in Table 2. For each policy experiment, we display the results with an e xogenous network (top panel) and the
results with an endogenous network recomposition based on 1,000 Monte Carlo simulations (bottom panel).
For each experiment, we report the set of removed groups (col. 1); the number of removed groups (col. 2);
the observed share of total �ghting involving this set of gro ups (col. 3); the counterfactual reduction (or its
median in the bottom panel) in rent dissipation associated w ith their removal (col. 4); a multiplier de�ned
as the ratio of col. 4 over col. 3 (col. 5); the Median Absolute Deviation in reduction in RD (col. 6); the
post-recomposition number of new enmities and alliances at the median Monte Carlo draw (col. 7); the OLS
coe�cients of enmities and alliances of a regression acrossMonte Carlo draws of post-recomposition reduction
in RD on reduction in RD (exogenous network) and the post-rec omposition numbers of new enmities and
alliances (col. 8).

signi�cantly when we allow an endogenous adjustment of the network. Removing the 11 groups
involved in the Ituri con
ict causes a reduction in rent diss ipation of 9%.45 Removing the 6 groups
associated with the Hutu exodus of Rwanda scales down con
ict by a mere 9% (lower than the
observed activity of these groups).46 Removing Uganda, Rwanda, and all their associates reduces
�ghting by 46%, signi�cantly more than the contribution of t hese groups to con
ict in the data.47

Finally, removing the 16 groups with more than �ve enemies reduces �ghting by 68%. This is a
large share, though lower than the 80% share of total �ghting they account for in the data. In
this case, the model predicts some crowding-in of violence from the surviving groups. Overall,
these �ndings con�rm the wisdom that the fragmentation in th e DRC con
ict makes it di�cult for
international organizations to deliver a single decisive blow.

45 Ituri is a province of north-eastern DRC that has witnessed a long-lasting con
ict between the agriculturalist
Lendu and pastoralist Hema ethnic groups. The apex of the con
ict was in 1999-2003, although this continues at a
lower level until the current days. The groups involved in th is con
ict for which we have information include: Front
for Patriotic Resistance of Ituri, Hema Ethnic Militia, Len du Ethnic Militia, Nationalist and Integrationist Front,
Ngiti Ethnic Militia, Party for the Unity and Safekeeping of Congo's Integrity, Popular Front for Justice in Congo,
Revolutionary Movement of Congo, Union of Congolese Patrio ts.

46 These groups are (according to ACLED de�nitions): ALIR, For mer Military Forces of Rwanda, FDLR, Hutu
Rebels, Hutu Refugees, Interahamwe.

47 These groups include: all factions of RCD, the armies of Rwanda and Uganda, CNDP, MLS, and UPC.
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Figure 4: The �gure shows the decrease in rent dissipation (relative to the baseline equilibrium) associated
with an arms embargo policy targeting each individual group (exceptthe FARDC) separately by setting si =
9. Groups are rank-ordered from the largest to the smallest decrease in rent dissipation. A negative number
means that targeting a particular group yields an increase in rent dissipation relative to the benchmark.

5.2 Arms Embargo

Forcing armed groups out of the contest may be very costly or even politically infeasible. In
this section, we study the e�ect of a less radical policy that operates along the intensive margin,
namely, by increasing the marginal cost of �ghting for targeted groups without removing them
from the contest. As in the analysis above, we study the change in rent dissipation associated
with counterfactual scenarios. We interpret this intervention as targeted sanctions such as an
arms embargo. An arms embargo may constrain the stock of armsand ammunitions at the target
groups' disposal, or force them to acquire extra equipment at higher prices in the black market.
Formally, we increase the �ghting cost in equation (1) from � x i to � (1 + si ) x i ; where si is the
policy parameter capturing the size of the intervention.

From a welfare perspective, we continue to measure total rent dissipation by the sum of the �ght-
ing e�orts of all groups, since this measures the extent of destructive violence. We do not compute
as a welfare cost the additional cost su�ered by the armed groups per unit of �ghting. Moreover, we
abstract from enforcement costs. As we will see, even if embargoes can be enforced costlessly, their
bene�ts are quantitatively small. A more formal analysis of the equilibrium conditions is provided
in Appendix A.4.

We start from policies targeting individual groups. Figure 4 summarizes the results of a tenfold
increase in the marginal cost (i.e.,si = 9). The most signi�cant gains accrue from targeting the two
RCD factions, followed by Rwanda and by the LRA. Interestingly, the e�ects are never large. An
embargo on the RCD-G or one on the RCD-K cause, respectively,a 3% and 2% reduction in total
�ghting. Note that the interventions have a sizeable e�ect on the group targeted, typically inducing
a reduction in their �ghting activity by 40-60%. However, th e non-targeted groups typically �ght
slightly more, resulting in modest aggregate gains. In several cases embargoes are counterproductive.
For instance, an embargo against Zimbabwe makes this group less active, but increases the activity
of the FARDC, its main ally, and of other groups so much that rent dissipation is higher than under
no intervention.
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Figure 5: The left panel lists the groups whose (joint) targeting by an arms embargo yields the largest
decrease in rent dissipation for di�erent values ofs. For instance, whens = 4 , targeting the LRA, RCD-G,
and RCD-K yields a larger fall in rent dissipation than any other group partition among the top 15 groups
in Figure 4 (the number of possible partitions considered is16; 383). The right panel displays the minimum
rent dissipation (as a percentage of the rent dissipation in the benchmark) that can be attained by the
most e�ective arms embargo policy conditional ons. For instance, whens = 4 , the lowest rent dissipation
(97:52%of the benchmark) can be attained by targeting the LRA, RCD-G, and RCD-K. The largest decline
in the rent dissipation with an arms embargo is 3:93%, and is attained when the planner targets only the
RCD-G by increasing its marginal cost of �ghting to 26.

Next, we consider simultaneously removing many groups (focusing on the top 15 groups). The
table in the left panel of Figure 5 summarizes the result by showing the optimal target for di�erent
ranges ofsi . Surprisingly, the optimal target group includes only a small subset of groups. For
low levels of si ; it is optimal to set an embargo on six groups. However, as we increasesi the
cardinality of the optimal number of groups falls. For si � 16; it becomes optimal target only a
single group. To see why, consider the case in whichsi = 25 and the RCD-G is subject to an arms
embargo. Consider a suboptimal policy which targets also a second group, the CNDP. Relative to
the optimal policy, the �ghting e�ort of the CNDP falls by a fou rth. However, the gain is o�set
by a generalized increase in the �ghting of the other groups,and by some bouncing back of the
RCD-G e�ort. Overall, the net e�ect is more rent dissipation th an if the RCD-G were targeted
alone. This example is representative of the typical e�ect oftargeting several groups.

The right-hand panel of Figure 5 shows the rent dissipation relative to the benchmark when the
optimal arms embargo policy is implemented (note: a lower level here indicates a more e�ective
policy) for di�erent levels of si . The welfare gain is U-shaped, the maximum gain being attained
by targeting only the RCD-G with a policy of si = 25:48

In summary, the welfare gains of policies that increase �ghting costs are small.49 Typically, the
�ghting e�ort of the targeted group falls. However, the response of the other groups is often the
opposite and o�sets large parts of the gain. Moreover, targeting many groups is ine�ective. It is

48 We ruled out the FARDC as target for the usual reasons. If we in clude the FARDC among the possible targets,
the results are similar. For su�ciently large si, the most e�ective embargo policy would indeed be one against the
FARDC. The maximum reduction in rent dissipation remains ca . 4%.

49 This result is in line with the skeptical conclusions of rece nt studies on the impact of arms embargoes, see Tierney
(2005) and Brzoska (2008), although this literature mainly emphasizes the di�culties in implementing them.
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useful to recall here that in this section we have maintaineda prohibitive cost of decommissioning,
and only focused on the e�ect of the policy on an intensive margin. To the extent to which an
arms embargo induces a group to drop out of the con
ict, the results of Section5.1 apply.50 This
section shows that the scope for policies that act on the intensive margin is limited in a contest
with a large number of �ghting groups like the DRC war.

5.3 Pacification Policies

In this section, we study the e�ect of paci�cation policies aimed at reducing ethnic and political
hostility between groups. More formally, we turn some enmity links into neutral links. We view
this analysis as especially relevant for policy. International organizations may decide to invest in
bringing hostile groups to the negotiating table or in de-escalating speci�c parts of the con
ict,
subject to limited economic or diplomatic resources (see Hoerner et al. 2015 for a recent study on
mediation and con
ict, as well as for an extensive overview of the literature on mediation). The
analysis casts light on which among such interventions would be most e�ective.

To provide a benchmark for the potential scope of paci�cation policies, consider �rst a drastic
counterfactual in which all enmity links are rewired into neutral ones. The e�ect is large: aggregate
�ghting is reduced by 65% at the baseline estimates of� and 
 . Not only enmities but also alliance
links are important for the containment of the con
ict: an ev en more dramatic counterfactual
scenario is obtained by rewiring all enmity and neutral relationships into alliance links. The result
is a reduction of aggregate violence in the order of 90% - almost full peace. Since wiping out all
enmities in the DRC would be utopistic, we consider more realistic interventions targeting speci�c
links.

We consider �rst the e�ect of pacifying enmity links vis-a-vis the FARC and the DRC police.
Table 7 summarizes the results for the 15 groups whose paci�cation yields the largest reduction in
rent dissipation at the baseline estimates. These 15 groupsaccount for 71% of the con
ict with the
FARDC (and for 70% of the total �ghting in the DRC excluding th e activity of FARDC). Table
B.1 in the appendix provides a complete list .

For each group we report the observed share in total �ghting,the share of total bilateral �ghting
involving this group and the FARDC, the change in rent dissipation associated with pacifying the
link between this group and all factions of the FARDC, and a multiplier, de�ned as the ratio
between the third and second columns. Here, the multiplier measures the impact of the policy
relative to the size of the con
ict between the targeted group and the FARDC. A multiplier of one
means then that the paci�cation yields a mere suppression ofthe bilateral con
ict between two
groups. Interestingly, with the exception of the CNDP, all multipliers are well above one, and in
some cases are very large. This indicates that paci�cation produces important spillovers through
the network.

The largest absolute gain stems from pacifying the FARDC with Rwanda (6% reduction in
�ghting), despite the fact that direct military operations between the two armies account for only
1% of total violence. The multiplier of 6 is similar to that of Uganda. Pacifying the FARDC with the
two main branches of the RCD is also important. Making peace with the UPC is especially fruitful:
while bilateral �ghting with the FARDC accounts for a mere 0. 2% of total �ghting, paci�cation
grants a reduction of violence of 2.4%. The bilateral con
ict with the mutiny of FARDC ranks top
8. This con�rms the importance of internal �ghts within the C ongolese army. Remarkably, the

50 One could try to combine the results of both sessions. It is di �cult however to have a good empirical assessment
of when a group can be induced to leave.

36



Table 7: Welfare e�ects of pacifying individual armed groups with the FARDC.

Group
Sh. Sh. bilat.

� �RD Multiplier
� �RD Mutipl.

�ght. �ght. ( � 1 SD) (� 1 SD)

(1) (2) (3) (4) (5) (6)

Rwanda 0.053 0.010 0.063 6.0 [0.040, 0.140] [3.8, 13.5]
RCD-G 0.087 0.030 0.056 1.9 [0.033, 0.132] [1.1, 4.4]
RCD-K 0.060 0.030 0.050 1.6 [0.028, 0.125] [0.9, 4.1]
LRA 0.041 0.023 0.037 1.6 [0.022, 0.088] [1.0, 3.9]
MLC 0.031 0.019 0.034 1.8 [0.020, 0.086] [1.1, 4.6]
Uganda 0.043 0.006 0.031 5.7 [0.020, 0.062] [3.7, 11.2]
UPC 0.022 0.002 0.024 11.2 [0.014, 0.053] [6.6, 24.9]
Mutiny FARDC 0.016 0.015 0.023 1.6 [0.015, 0.054] [1.0, 3.6]
CNDP 0.043 0.038 0.019 0.5 [0.013, 0.033] [0.4, 0.9]
Lobala Mil. 0.001 0.000 0.017 52.7 [0.011, 0.039] [32.8, 119.7]
FPJC 0.006 0.006 0.017 2.6 [0.010, 0.037] [1.7, 5.8]
FRPI 0.009 0.007 0.017 2.4 [0.010, 0.037] [1.5, 5.3]
BDK 0.002 0.002 0.016 8.1 [0.010, 0.036] [5.2, 18.3]
Enyele Ethnic Mil. 0.001 0.001 0.016 24.2 [0.010, 0.035] [15.3, 54.6]
Munzaya Ethnic Mil. 0.001 0.000 0.016 32.3 [0.010, 0.035] [20.4, 72.7]

Note: The computation of the counterfactual equilibrium is based on the baseline point estimates
of column 4 in Table 2. For each group, we report the observed share of total �ghtin g involving
this group (col. 1); the observed share of total �ghting invo lving this group against the FARDC
(col. 2); the counterfactual reduction in rent dissipation associated with its paci�cation (col. 3); a
multiplier de�ned as the ratio of col. 3 over col. 2 (col. 4); t he reduction in RD and its associated
multiplier for a set of parameters equal to the baseline estimates � 1 SD (cols. 5-6).

analysis identi�es a set of small ethnic militias such as theLobala Militia, Bunda Dia Kongo (BDK),
Enyele Ethnic Militia, and Munzaya Ethnic Militia, whose pa ci�cation with the FARDC would be
very e�ective. The armed activity between each of these militias and the FARDC accounts for less
than 0.1% of total violence, and yet putting to an end the bilateral hostility of any of them with
the FARDC would reduce violence by 1.6-1.7%.

The analysis of the simultaneous paci�cation of multiple groups con�rms the salient role of
Rwanda (see Appendix TablesB.17, B.18, and B.19). Consider the case in which three groups
are treated simultaneously. The largest e�ect stems from targeting Rwanda, the RCD-G and the
RCD-K, whose joint paci�cation with the FARDC scales down vi olence by 17%, with a multiplier
of 2.6. Similar results are attained by interventions targeting smaller armed groups such as the
MLC or the LRA. 51 The largest multipliers accrue from triplets involving Rwanda and Uganda,
along with, respectively, the MLC (mult. 3.6) and LRA (mult. 3). This con�rms that the largest
relative gains accrue from targeting the international sponsors rather to their local proxies, despite
the fact that the latter are more active in �ghting. The analy sis also con�rms the e�ectiveness of
paci�cations involving small groups. As many as 11 ethnic militias (or other small groups) enter
triplets with a multiplier of 3 or more. 52

51 More generally, Rwanda is by far the most important actor for paci�cation purposes: it features in 40 out of the
top 50 triplets, and in 8 out of the top 9 triplets. The RCD-G an d RCD-K feature 29 times each, while Uganda,
MLC and LRA features 5 times each.

52 Overall we �nd no evidence of strong complementarity nor sub stitution. The simultaneous paci�cation of three
players usually yields an e�ect that is close to the sum of the e�ects of individually pacifying each of the three players.
More precisely, the average e�ect of simultaneous removal of three players is 97% of the sum of the individual e�ects
in the top 20 triplets. The overall picture is similar when on e moves to �ve-player paci�cation. In this case, the e�ect
of the most e�ective intervention is a reduction of con
ict i n the order of 20-22%.
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Table 8: Welfare e�ects of pacifying selected multiple armedgroups with FARDC.

Set of Groups
# Sh. bil. �ght.

� �RD Multipl. MAD
New enm. & all. Regression

groups FARDC (at median) coe�s.

(1) (2) (3) (4) (5) (6) (7) (8)

EXOGENOUS NETWORK

Foreign Groups 29 0.213 0.185 0.9 { { {
Ituri 9 0.086 0.099 1.2 { { {
Out of Rwanda 6 0.062 0.014 0.2 { { {
Rwa&Uga&ass. 10 0.217 0.240 1.1 { { {
Large Groups 16 0.621 0.338 0.5 { { {

WITH ENDOGENOUS NETWORK RECOMPOSITION

Foreign Groups 29 0.213 0.184 0.9 0.041 [1, +15] [-0.007, +0.005]
Ituri 9 0.086 0.095 1.1 0.018 [+7, +1] [-0.004, +0.008]
Out of Rwanda 6 0.062 0.014 0.2 0.000 [+0, +0] [-0.004, +0.014]
Rwa&Uga&ass. 10 0.217 0.165 0.8 0.052 [-3, +11] [-0.008, +0.007]
Large Groups 16 0.621 0.313 0.5 0.035 [-6, +19] [-0.004, +0.005]

Note: The computation of the counterfactual equilibrium is based on the baseline point estimates of column 4
in Table 2. For each policy experiment, we display the results with an e xogenous network (top panel) and the
results with an endogenous network recomposition based on 1,000 Monte Carlo simulations (bottom panel). For
each experiment, we report the set of paci�ed groups (col. 1) ; the number of paci�ed groups (col. 2); the observed
share of total �ghting involving this set of groups against t he FARDC (col. 3); the counterfactual reduction (or
its median in the bottom panel) in rent dissipation associat ed with their paci�cation (col.4); a multiplier de�ned
as the ratio of col. 4 over col. 3 (col. 5); the Median Absolute Deviation in reduction in RD (col. 6); the
post-recomposition number of new enmities and alliances at the median Monte Carlo draw (col. 7); the OLS
coe�cients of enmities and alliances of a regression across-Monte Carlo draws of post-recomposition reduction in
RD on reduction in RD (exogenous network) and the post-recom position numbers of new enmities and alliances
(col. 8).

Table 8 summarizes the result of paci�cation for the subcon
icts already discussed in Table6
above. Here, the policy treatment consists of reconciling all enmities both vis-a-vis the FARDC and
between the actors in each subcon
ict. The reconciliation of all foreign groups yields a reduction in
rent dissipation of 18%. Interestingly, the reconciliation of the Ituri con
ict reduces rent dissipation
by 10% { a larger e�ect than that of wiping out all groups in Tabl e 6. The reconciliation of all
groups associated with Uganda and Rwanda yields a 24% reduction in violence.

Finally, we study the e�ect of pacifying inter- and intraethn ic con
icts between Hutu- and Tutsi-
a�liated groups. 53 First, we consider rewiring all inter- or intra-Hutu-Tutsi enmities to neutrality.
The e�ect is a reduction in con
ict of 9%. The e�ect becomes much larger if one rewires all bilateral
Hutu-Tutsi links to neutrality and all Hutu-Tutsi co-ethni c links to friendships. In this case, the
con
ict is reduced by 21%.

6 Endogenous Network Recomposition

In the analysis thus far, we have maintained the assumption of an exogenous network structure. The
analysis implicitly stipulates that alliances and enmities can be traced back to historical relations
among groups that are not a�ected by the warfare dynamics. In some cases (e.g., the historical

53 We code Tutsi and Hutu a�liation following the ethnic group d ata from Cederman et al. (2009). In our sample,
14 groups are ethnical Tutsis, and 11 are ethnical Hutus.
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tensions between Hutus and Tutsis) this is a reasonable assumption. In other cases, such as the
alliances forged during the First Congo War, relationshipsare more malleable.

The exogenous network is a straightjacket when we run counterfactual policy experiments. For
instance, removing Rwanda or Uganda would likely a�ect the system of alliances within the DRC.
Ideally, one would like to model a fully endogenous network.There are two main di�culties in our
environment. First, for many pairs information is scant, li miting our ability to predict the nature
of the link. Second, enmities are by design di�cult to ration alize in terms of payo�s, as they often
harm both parties involved. Therefore, in a model of endogenous network formation it would be
natural to dissolve such links.54 Since these disadvantageous links exist and persist in the data,
they must stem from (often unobservable) historical factors such as grievances and past con
icts.

In this section, we construct a model of semi-endogenous network formation that predicts the
resilience of network links to exogenous policy shocks. We postulate a discrete choice Random
Utility Model (RUM) where each pair of groups selects the bilateral link (either enmity, alliance, or
neutrality) in order to maximize utility. We make the import ant assumption that the formation of
the link f i; j g depends on the characteristics ofi and j (including their position in the network), be-
ing otherwise independent of all other links. Conditional independence is a strong (albeit common)
assumption. Clearly, in a fully microfounded model where each group decides in a rational and
sophisticated fashion which links to add or break, spillovers across di�erent decisions might arise
and the IIA assumption could be challenged. Such an alternative model would be more complicated
to analyze, and go beyond the scope of this extension.

Our approach is close in spirit to Fafchamps and Gubert (2007a,b), although in their papers
interactions between groups have a binary nature. It is alsoclose to Leskovecet al. (2010), who
use a logistic regression to estimate signed networks, and to Jiang (2015), who studies a stochastic
block model for signed graphs.

6.1 Random Utility Model

We estimate a choice model of link formation that is based on the following RUM:

Uij (a) = � � CSFij (a) + Xij � � (a)+ Zij � � (a)+ FE i (a) + FE j (a) + ~uij (a); (23)

where a 2 f� 1; 0; 1g and Uij is the joint utility of dyad ij associated with the alternative a.
Each dyad chooses the link that maximizes its surplus,a�

ij = arg max Uij (a). We abstract from
distributional issues by assuming that each dyad makes the e�cient choice and can then arrange
within-dyad transfers so as to ensure that the choice is acceptable to both parties.55 The utility of
each of the three alternatives depends on observable and unobservable factors comprising:

1. CSFij (a); the equilibrium joint payo� of the dyad ij in the second stage CSF game (equation
1) where the network structure has alternative a for link f i; j g, the other network links being
unchanged. CSFij can be inferred from our structural equation (22) once the parameters�
and 
 are known and the network structure G is adjusted for alternative a.

54 This issue is speci�c to our model. For instance, R&D links, c ustomer relationships, �nancial links or criminal
connections typically add some values to players.

55 Note that in the (unspeci�ed) intra-dyad negotiation proto col, enmity can be considered as the default option
and so there is no transfer and no need for commitment under this alternative. Potential transfers take place only
under neutrality and alliance.
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2. Xij ; a vector of dyad-speci�c characteristics including the spatial distance between the cen-
troids of i and j , and categorical variables capturing the fact that they are a�liated to the
same ethnic group (from Cedermanet al. 2009), whether they have a common or opposite
Tutsi-Hutu background, whether at least one of them is a foreign army, whether at least one
of them is a government actor. These characteristics are likely predictors of patterns of al-
liance or enmity. For instance, the Hutu-Tutsi antagonism is expected to increase the utility
associated witha = � 1:

3. Zij ; network-dependent characteristics, in the spirit of Leskovec et al. (2010) that are likely
to have a systematic e�ect on the nature of the link. These comprise the number of common
allies and common enemies ofi and j; and the number of common con
icting neighbors
(namely, i 's enemies that arej 's allies, or vice versa).

4. Alternative-dependent group-speci�c �xed e�ects FE i (a) that capture the unconditional
propensity of i to form the alternative a.

5. ~uij (a); i.e., type I extreme-value distributed random utility shocks.

This model is estimated by maximum likelihood as a standard conditional logit estimator. We
run an alternative-speci�c conditional logit for aij = +1 (alliance) and aij = � 1 (enmity) setting
neutrality as the reference state. This yields an estimatedprobability that the link f i; j g is an
alliance, resp. an enmity, relative to neutrality. The estimation results are reported in Table B.20
in the appendix.

The coe�cient � { the only coe�cient that is not alternative-speci�c { is ins igni�cant, implying
that con
ict-speci�c payo�s under the di�erent alternatives have very low predictive power. This
�nding is reassuring, being consistent with our assumptionthat the network structure is exogenous
to our baseline CSF game. In contrast, bothXij and Zij have signi�cant explanatory power, with
signs broadly in line with prior expectations. In particula r, when i is Hutu and j is Tutsi (or
vice versa) the probability of an enmity (a = � 1) is signi�cantly higher than that of neutrality and
alliance. As expected, spatial proximity is a strong positive predictor of both alliances and enmities
relative to neutrality. Moving to network-dependent characteristics, common enmities increase the
probability of being allied and reduce the probability of being enemies (both e�ects being highly
signi�cant). Similarly, having con
icting relationships with a third group (e.g., i is an enemy ofk,
while j is an ally of k) increases the probability that i and j are enemies and reduces the probability
that they are allies. More surprisingly, common alliances decrease the probability for the two groups
to be allied { the e�ect on being enemies being close to zero. This is in line with the narrative that
many links are non-transitive.

The model �ts the data well (see Appendix B.4.1). Appendix Figure B.1 shows that the
predicted probability of a link being an enmity (alliance) conditional on the actual link being an
enmity (alliance) is signi�cantly higher than it is conditi onal on the actual link not being an enmity
(alliance). Figure B.2 shows how the model �ts the distribution of some network characteristics
(degree-one enemies, degree-one allies, number of degree-one links, common enemies, common
allied and con
icting neighbors) in the data. Consider, for instance, common enemies. The solid
line shows that, in the data, 40% of the dyads have no common enemies, 27% have one common
enemy, 14% have two common enemies, etc. The dashed line shows the mean prediction of the RUM
across 1,000 Monte Carlo draws, with an associated con�dence interval (plus-or-minus one standard
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deviation). The simulated distribution tracks the data ver y closely, with no data observation falling
outside the con�dence interval of the RUM. The same is true in all other panels.

6.2 Re-estimating the Model using the Network Structure Pre dicted by the RUM

The main goal is to use the RUM to predict the changes in the network structure induced by
policy shocks. Before turning to that, we take a brief de-tour to re-estimate the model using the
network structure predicted by the RUM as an instrument for t he observed network. Consider
the regression equation (17), and in particular the IV regression where TFE it and TFA it are
instrumented by the rainfall in allies' and enemies' territories. Here, we replaceRE it and RA it by
dRE it =

P n
j =1 p̂�

ij � RAIN jt and dRA it =
P n

j =1 p̂+
ij � RAIN jt ; wherep̂�

ij 2 [0; 1] and p̂+
ij 2 [0; 1] are the

probabilities that groups i and j are allies and enemies as predicted by the RUM.56 Relative to the
baseline estimation,p̂�

ij and p̂+
ij replace the (observed) links,a�

ij and a+
ij in the construction of the

instruments for the 2SLS estimator. Thus, the exogenous source of variation is the rainfall shocks
in other groups' territories and the set of dyadic characteristics (ethnicity, spatial proximity, etc.)
and network-speci�c covariates in equation (23). Note that the results are robust to restricting the
RUM to the set of dyadic characteristics only.

The results are shown in column 9 of TableB.7, which displays the analogue of the baseline
estimation in column 4 of Table 2.57 The coe�cients are in the ball park of the baseline estimates.
The coe�cients of TFE and TFA are, respectively, 0.11 (s.e. 0.03) and -0.11 (s.e. 0.05). In spite
of the low KP-stat of 4 indicating a weak instrument problem, we �nd the results reassuring, given
the challenge of estimating a complex network like the one inthe DRC war.

6.3 Endogenous Network Adjustments After Policy Shocks

In this section, we use our estimated choice model of link formation to predict the changes in the
network structure triggered by policy shocks. This intervention a�ects both CSFij (a) and Zij in
equation (23), which in turn a�ects the prediction of the RUM. We allow post -intervention network
recomposition and quantify the impact of the policy on �ghti ng in the recomposed network.

Since the conditional logit model does not yield estimates of the unobserved random utility
shocks ~uij (a) in equation (23), our analysis must rely on Monte Carlo simulations. More precisely,
for each policy experiment we perform Monte Carlo simulations of the network recomposition, and
obtain a counterfactual distribution of �ghting e�orts. In t he tables below we focus on the e�ects
at the median realization, although in some cases we show theentire distribution.

For a given policy experiment, we iterate the following algorithm 1,000 times:

1. We draw a vector of random utility shock ũij for each dyadij from a truncated multivariate
type I extreme value distribution with unconditional mean and variance being, respectively,
0:577 (the Euler-Mascheroni constant) and

p
�= 6. The support of the distribution corresponds

56 The prediction of the observed component of utility in equat ion (23) is given by

V̂ij( aj G, X ij , Z ij) = α̂ � CSFij (a) + X ij � �̂ (a)+ Z ij � �̂ (a)+ dF Ei(a) + dF Ej (a)

with the normalization � (0) = � (0) = F Ei(0) = F Ej(0) = 0 . In turn, the predicted conditional probabilities
are given by the standard formula Pij ( aj G, X ij , Z ij ) = eVij ( a) /(eVij ( � 1) + eVij (0) + eVij (+1) ). Henceforth, p̂�

ij �
Pij ( a = � 1j G, X ij , Z ij ) and p̂+

ij � Pij ( a = +1 j G, X ij , Z ij) .
57 The results are also robust when we consider a time-varying network as in Section 4.2.1. Table B.21 in the

Appendix shows the set of main results for the benchmark speci�cations in Tables 2 and 4.
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to the domain of ũij that is compatible with the link observed in the data. This ensures that,
in the absence of policy intervention, there is no network recomposition.58

2. For each dyadij; we compute the post-policy values ofCSFij and Zij (the other covariates
in equation (23) are not a�ected). Given these and the estimated parameters,we compute
the after-policy observable component of utility V post

ij (a).

3. For each Monte Carlo draw we compute the post-policy optimal link: apost
ij = arg max

a2f� 1;0;+1 g
V post

ij (a)+

~uij (a). Rewiring occurs whenaobs
ij 6= apost

ij : This yields the post-policy recomposed network
Gpost.

4. The counterfactual equilibrium vector of �ghting e�orts i s obtained from the structural equa-
tion ( 22) and Gpost.

Typically, allowing network recomposition in response to policy shocks increases (decreases)
rent dissipation relative to the exogenous network benchmark whenever the policy shock triggers
an increase (reduction) in the number of enmities and a reduction (increase) in the number of
alliances. Note that a policy may a�ect both the number of alli ances and enmities in the same
direction causing ambiguous net e�ects.

6.3.1 Removing Armed Groups

In this section, we study the e�ect of removing one or more groups from the con
ict (cf. Section 5.1)
when endogenous network adjustments are allowed.59 Table 9 summarizes the �ndings focusing,
for comparability, on the top 15 groups in Table 5. All but three groups remain in the top 15
even after allowing for network recomposition.60 The UPC is especially interesting. This is a
medium-large group whose activity accounts for 2.2% of the total violence. Its removal in Table
5 yields a reduction in violence of the order of 3%, with a sizable multiplier of 1.4. However, the
recomposition of the network after its removal o�sets two thi rds of the gains.

The left panel in Figure 6 shows the reduction in rent dissipation with and without network
recomposition for the top 15 groups. The correlation is high(81%), implying that the short-run
e�ects of Section5.1 are overall robust to network recomposition. Among the groups whose removal

58 Our sampling procedure for drawing the random utility shock s from a truncated multivariate distribution follows
a standard accept-reject algorithm (see Train 2003, Chapter 9), where the de�nition of the acceptance domain ~u ij

follows from the RUM. We �rst draw a candidate triplet ~u ij from the unconditional density. Denoting by Vij (a)
the observed utility in equation ( 23), we retain the draw if it is compatible with the observed lin k aobs

ij , namely
Vij (aobs

ij ) + ~uij (aobs
ij ) = max

a2f� 1,0,+1 g
Vij (a) + ~uij (a). If the triplet does not satisfy the previous condition, we re ject this

draw and we draw a new triplet. The procedure stops when 1,000 accepted draws have been obtained for each dyad
ij.

This conditional approach implies that the simulated netwo rk recompositions are entirely driven by the policy-
driven changes in CSFij (a) and Z ij and not by re-sampling of the unobserved utility shocks.

59 Arms embargoes do not change the network, and generate no variation to predict network recomposition. Paci�-
cation is based on an exogenous change in the nature of links.It is ambiguos how one should think of an endogenous
network recomposition in response to the shock.

60 The three groups that drop out of the top 15 are the UPC, Mutiny of FARC, and FRPI. The group entering
the top 15 are two branches of the RCD (the �rst collects all ev ents involving "unspeci�ed" RCD; the second is the
group labeled RCD-National; both are likely to su�er with la rge measurement error) and the National Army for the
Liberation of Uganda.
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Table 9: Welfare e�ect of removing armed groups with network recomposition.

Group
Sh.

� �RD � �RD Multipl.
MAD

� �RD
New enm. New all.

�ght.
(exog. (end. (end. due to

at med. at med.
netw.) netw.) netw.) rewiring

(1) (2) (3) (4) (5) (6) (7) (8)

RCD-G 0.087 0.151 0.137 1.6 0.025 -0.014 1 -2
RCD-K 0.060 0.094 0.076 1.3 0.027 -0.018 2 0
Rwanda 0.053 0.066 0.103 1.9 0.040 0.037 -5 0
LRA 0.041 0.056 0.051 1.2 0.005 -0.005 0 -1
FDLR 0.066 0.055 0.058 0.9 0.008 0.004 -1 1
Mayi-Mayi 0.057 0.046 0.083 1.5 0.024 0.037 -2 1
Uganda 0.043 0.043 0.066 1.5 0.034 0.023 -4 4
CNDP 0.043 0.041 0.041 0.9 0.011 0.000 0 0
MLC 0.031 0.039 0.054 1.7 0.018 0.015 -2 1
UPC 0.022 0.030 0.011 0.5 0.020 -0.020 0 -1
Lendu Ethnic Mil. 0.024 0.022 0.049 2.0 0.020 0.027 -3 0
Mutiny FARDC 0.016 0.016 0.016 1.0 0 0 0 0
Interahamwe 0.014 0.014 0.027 2.0 0.024 0.013 0 -1
ADF 0.013 0.012 0.036 2.7 0.012 0.024 -2 1
FRPI 0.009 0.010 0.010 1.1 0 0 0 0

Note: The computation of the counterfactual equilibrium is based on the baseline point estimates of
column 4 in Table 2. The results are based on 1,000 Monte Carlo simulations of anendogenous network
recomposition. For each group, we report the observed shareof total �ghting involving this group (col. 1);
the counterfactual reduction in rent dissipation associat ed with its removal (exogenous network) (col. 2);
the counterfactual reduction in rent dissipation associat ed with its removal with network recomposition
(col. 3); a multiplier de�ned as the ratio of col. 3 over col. 1 (col. 4); the Median Absolute Deviation
in reduction in RD across Monte Carlo draws (col. 5); the di�e rence between col. 3 and col. 2 (col. 6);
post-rewiring number of new enmities and alliances at the median Monte Carlo draw (cols. 7-8).
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Figure 6: (Left panel) This �gure displays the reduction in rent dissipation with and without network
recomposition following the removal of each of the top 15 groups. (Right panel) This �gure displays the
Monte Carlo distribution of reduction in rent dissipation following the r emoval of 24 foreign groups (1,000
simulated network recompositions).
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causes the largest network recomposition we �nd the armies of Rwanda and Uganda. Recall that
removing Rwanda causes a reduction of 6.6% in rent dissipation when the network is exogenous.
The adjustment of the network causes a further 3.7% reduction, lifting the median total e�ect
of removing Rwanda to 10.3% (more than twice as large as its observed �ghting share). This
additional e�ect is due to �ve enmities switching to neutral l inks. Similarly, removing Uganda
triggers some network recomposition (4 enmities destroyed, 4 alliances formed). Two groups whose
removal is especially consequential for the network structure are the Lendu Ethnic Militia and the
ADF. In both cases, the indirect e�ect of removing them from th e contest exceeds the direct e�ect
of the policy under an exogenous network.

Consider, next, the e�ect of removing selected groups of groups. The results are reported in the
lower panel of Table6. The most remarkable new result is in the experiment where weremove all
groups with a foreign a�liation. In this case, the reduction in rent dissipation increases from 27%
(exogenous network) to 41%. The e�ect is estimated precisely, with a median absolute deviation
(MAD) of 4.1%. The large extra reduction in �ghting e�orts acc rue from both a reduction in the
number of enmities (9 at the median) and an increase in the number of friendly links (6 at the
median).61

The e�ect of removing the groups associated with the Hutu exodus is also magni�ed signi�cantly
by the network recomposition (from 8.7% to 12.2%). The same is true for the set of large groups.
In other cases, the recomposition of the network has an attenuating e�ect or no e�ect.

7 Conclusion

In this paper, we construct a theory of con
ict in which di�ere nt groups compete over a �xed amount
of resources. We introduce a network of alliances and enmities that we model as externalities added
to a Tullock contest success function. Alliances are bene�cial to each member, but are not unitary
coalitions. Rather, each group acts strategicallyvis-a-vis both allies and enemies. We view our
theory as especially useful in con
icts characterized by high fragmentation, non-transitive relations
and decentralized military commands, all common features of civil con
icts.

We apply the theory to the analysis of the Second Congo War, one of the bloodiest civil con
icts
in modern history. Our estimation of the network externalit ies is methodologically similar to that
followed in the recent work of Acemogluet al. (2015), who tackle a re
ection problem through an
instrumental variable strategy. While they rely on histori cal information, we exploit the exogenous
variation in weather conditions over space and time. The signs of the estimated coe�cients conform
with the prediction of the theory. Each group's �ghting e�ort is increasing in the total �ghting
of its enemies and decreasing in the total �ghting of its allies. We then use our structural model
to quantify the e�ciency of various paci�cation policies. I n particular, we study which groups
contribute most to the escalation of the con
ict, either dir ectly or indirectly, via the externalities
they exercise on the other groups' �ghting e�ort.

The analysis yields a number of policy-relevant �ndings. The importance of Rwanda and
Uganda goes well beyond the battle�eld contribution to the con
ict of these two major state
actors. Breaking peace between the DRC government and its powerful neighbors would make a
signi�cant contribution to the reduction of violence. In co ntrast, interventions such as targeted

61 To assess the average e�ect of the change in the number of enmities and alliances, we regress the rent dissipation
on the number of new alliances and new enmities across the 1,000 Monte Carlo draws. The estimated e�ects are
0.010 and -0.008, respectively. The e�ect at the median is consistent with this average e�ect. Figure 6 shows the
distribution of Monte Carlo realizations.
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arms embargo that increase the cost of �ghting of speci�c groups without removing them from the
contest are found to be ine�ective. We consider an extension in which not only the groups' �ghting
e�ort but also the network of alliances and enmities is allowed to respond endogenously to policy
interventions. This extension strengthens the �ndings about the key role of Uganda and Rwanda,
and more generally of foreign groups in the DRC war. Removingall groups with a foreign a�liation
is predicted to yield a reduction in violence of the order of 41% { well above their joint contribution
to observed violence.

The Congo War is a natural testing ground for our theory for being a con
ict where most
alliances and enmities are shallow links, and where many allied actors do not coordinate their
actions. However, informal alliances and enmities and intransitive links are by no means unique to
Congo. Rather, they are common in most modern civil con
icts, and pervasively so, for example,
in the recent con
icts of Afghanistan, Somalia, Iraq, Sudan, and Syria.

Even in the case of more conventional international wars, shallow links and intransitive links
are not uncommon. For instance, the anti-Nazi alliance between the Soviet Union and the Anglo-
Americans during World War II was a tactical alliance to defeat a common enemy. Well before the
war was over, the Soviet Union and the Anglo-Americans were �ghting strategically for con
icting
objectives, each trying to secure the best political and military post-war outcome.62 Another
example is the intricate situation in the Balkans during WWI I.63 Similar considerations apply to
earlier wars, from the Peloponnesian War in ancient Greece,to the Napoleonic Wars (Ke et al.
2013), or to the alliances between warlords in China after the proclamation of the Republic in
1912.

Our analysis takes the �rst step towards understanding how webs of alliances and enmities can
lead to escalation or containment of con
ict. Future work can build on this to propose a full-
edged
model of endogenous network formation. In work in progress,we are extending the analysis to other
fragmented con
icts such as the recent civil war in Syria.

MAIN APPENDIX

Proof of Proposition 1. We �rst establish the existence of a Nash Equilibrium in which all groups
participate in the contest (an interior equilibrium). Let x� = ( x �

1; : : : ; x �
n )> 2 Rn denote the candidate

equilibrium e�ort vector that satis�es the FOCs; let x�
� i 2 Rn� 1 denote the same vector without the i 'th

component. Let � i (G; x i ; x�
� i ) = ' i (G; x i ; x�

� i )=
P n

j =1 ' j (G; x i ; x�
� i ) � x i denote the payo� function of a

deviation from the equilibrium e�ort, in the range where ' i � 0:
The FOCs of the pro�t maximization problem yields:

0 =
@�i
@xi

(G; x �
i ; x�

� i ) =

P n
j =1 ' �

j � ' �
i (1 + �d +

i � 
d �
i )

� P n
j =1 ' �

j

� 2 � 1: (24)

62 Several episodes corroborate this view. In August 1944, theRed Army refused to support the British-sponsored
Polish Home Army during the Warsaw Uprising. This tragic eve nt was by-and-large a proxy war between two formally
allied governments to gain control over Poland after the war .

63 The Independent State of Croatia led by Ante Pavelic was spon sored by Nazi Germany, but was in poor terms
with Italy, the main ally of Germany at the time, that occupie d large sectors of Croatian Dalmatia. During the same
period, Serbia under Milan Nedic was a Nazi puppet state collaborating with both Germany and Italy. The two sides
{ Croatian Ustasa and Serbian Chetniks { ran a parallel feroc ious ethnic war against each other (Goldstein 2013).
Yet, the two enemies had a common enemy in Tito's partisan Nat ional Liberation Army.
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Here we have used the fact that@'�j (G; x i ; x�
� i )=@xi = � ij + �a +

ij � 
a �
ij (where � ij = 0 if i 6= j and � ii = 1 ),

consequently,
P n

j =1 @'�j =@xi = 1 + �d +
i � 
d �

i . Standard algebra yields:

' �
i =

1
1 + �d +

i � 
d �
i

0

@1 �
nX

j =1

' �
j

1

A
nX

j =1

' �
j : (25)

Next, de�ne � �;

i (G) �

�
1 + �d +

i � 
d �
i

� � 1
> 0 and � �;
 (G) � 1�

� P n
i =1 � �;


i (G)
� � 1

; where the inequality

follows from (3). Summing over i 's in equation (25) implies that

' �
i = � �;
 (G)(1 � � �;
 (G))� �;


i (G) > 0: (26)

The inequality hinges on establishing that � �;
 (G) > 0; or equivalently
P n

i =1 � �;

i (G) > 1. Observe thatP n

i =1 � �;

i (G) =

P n
i =1

1
1+�d +

i � 
d �
i

�
P n

i =1
1

1+�d +
i

� n
1+�d +

max
> 1. The last inequality holds true if and

only if � < n � 1
d+

max
, which is in turn is necessarily true if � < 1. This, in turn, follows from the assumption

that � + 
 < 1=maxf � max(G+); d�
maxg that implies that � + 
 < 1=maxf � max(G+); � max(G� )g; since

� max(G� ) < d �
max (Cvetkovic et al. 1995). Moreover, for any non-empty graphG, � max(G) � 1, because

for any graph G, � max(G) � maxi =1;:::;n
p

di (Cvetkovic et al. 1995), and maxi =1;:::;n di � 1when G is not
empty. Thus, � � � + 
 < 1: This establishes that ' �

i � 0 for all i = 1 ; : : : ; n.
Next, we compute x� . Combining (2) with ( 26) yields:

x �
i + �

nX

j =1

a+
ij x �

j � 

nX

j =1

a�
ij x �

j = � n;� (G)(1 � � n;� (G))� �;

i (G): (27)

Denoting by Γ�;
 (G) � (� �;

1 (G); : : : ; � �;


n (G))> ; we can write this system in matrix form as

(In + � A+ � 
 A� )x� = � �;
 (G)(1 � � �;
 (G))Γ�;
 (G): (28)

The fact that � + 
 < 1=maxf � max(G+); � max(G� )g also ensures that the matrix In + � A+ � 
 A� is
invertible. 64 Then, (28) yields the e�ort levels:

x� = � �;
 (G)(1 � � �;
 (G))c�;
 (G); (29)

where c�;
 (G) is the centrality measure de�ned by equation (8)). Equation ( 29) is the matrix-form version
of equation (7) in the proposition. Evaluating � i (G; x) at x = x � yields equation (9) in the proposition.

Thus far, we have established thatx� and ' � satisfy the FOCs. In order to prove that the FOCs pin down
a Nash equilibrium, we must establish that, for all i = 1 ; 2; :::n, x �

i is a global maximum of � i (G; x i ; x�
� i ) for

all x i 2 R: To prove the result, we split the horizontal line at the cuto� value x̂ i ; uniquely de�ned by the
condition ' i (G; x̂ i ; x �

� i ) = 0 : For x i < x̂ i ; � i (G; x i ; x�
� i ) = � D . For x i � x̂ i ; standard algebra establishes

that
�
@2� i =@x2i

�
(G; x i ; x �

� i ) = � 2=(� �;

i (G) � � �;
 (G)) < 0; where the inequality follows from the facts,

established above, that � �;

i (G) > 0 and � �;
 (G) > 0. Thus, � i (G; x i ; x �

� i ) is strictly concave in x i in the
subdomain x i � x̂ i . Moreover, equation (4) establishes that ' �

i > 0 = ' i (G; x̂ i ; x �
� i ): This, together with

the fact that ' i is increasing in x i ; establishes that x �
i > x̂ i . The facts that (i) � i (G; x i ; x �

� i ) is strictly
concave inx i ; and (ii) x �

i > x̂ i jointly imply that � i (G; x �
i ; x �

� i ) is a global maximum of the � i function in
the subdomainx i � x̂ i : It is immediate that � i (G; x �

i ; x �
� i ) < 1 : De�ne D = max i � � i (G; x �

i ; x �
� i ): Then, for

64 This follows from standard linear algebra results. The dete rminant of a matrix of the form In �
P p

j=1 αjWj is
strictly positive if

P p
j=1 jαj j < 1/ maxj=1 ,...,p kWjk, where kWjk is any matrix norm, including the spectral norm,

which corresponds to the largest eigenvalue ofWj .
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all D > D ; we have that � i (G; x �
i ; x �

� i ) > � D; namely, defeat is not a pro�table deviation. This completes
the proof of existence of an interior Nash Equilibrium.

Next, we prove uniqueness. We assume that, contrary to the statement of the proposition, for all D < 1 ,
there exists an equilibrium wheren � n̂ > 0 groups take the defeat option. Then, we show that this induces
a contradiction. Since we have proved that when alln groups participate in the contest there exists a unique
equilibrium, this establishes global uniqueness.

The condition that � 0;

i > 0, 8i = 1 ; 2; :::n; ensures that, in a candidate equilibrium in which only n̂ < n

groups participate in the contest, all such n̂ groups choose a �nite e�ort level (this follows immediately
from the analysis of the case where alln groups participate). The e�ort level of participants is x �

n̂ =
� �;
 (Gn̂ )(1 � � �;
 (Gn̂ ))c�;
 (Gn̂ ) where the graph Gn̂ only includes the participating groups. Consider a
non-participating group � . For this group, in the assumed equilibrium, � � = � D . Suppose groupv deviates
and chooses, instead,x � = x0

� ; where x0
� is the unique threshold such that ' � (Gn̂ +1; x0

� ; x̂ �
� � ) = 0 : The

payo� of this deviation payo� is � � (Gn̂ +1; x0
� ; x̂ �

� � ) = � x0
� > �1 : Thus, for any D > x 0

� ; this deviation
is pro�table. Repeating the argument for all partitions establishes that there exists D < 1 such that, for
all D > D ; any candidate equilibrium where n � n̂ > 0 groups take the defeat option is susceptible to a
pro�table deviation (hence, it is not an equilibrium). Thus, the only eq uilibrium is interior, completing the
proof.
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